When heavy exercise results in too much acid in the human body, then "Lactic acid fermentation" occurs in our body. It is a metabolic process by which glucose and other six-carbon sugars <span>are converted into cellular energy and the metabolite </span>lactate, and we feel a lot of pain like burning muscles
Hope this helps!
Explanation:
please mark me as brainlest
There are some standard numbers that help us describe the structure of an atom and help us categorize them. Those are the atomic number, the mass number and the numbers of electrons in an atom (or ion). Atoms are electrically neutral, hence they have the same number of protons as electrons. If an atom has a charge and has thus become an ion, it is because electrons joined it or left. For example in this case, since the ion has +2 charge, 2 electrons left it and thus the ion has 4 electrons (2 electrons less than its protons). The mass number is the sum of the protons and neutrons of an atom (that are in the nucleus). In this case, this yields a mass number of 13 for this ion. The atomic number of an atom (or ion) is the total number of protons in the nucleus. Protons do not leave the nucleus except for radioactive reactions and thus the atomic number of an atom (or ion) does not change in chemical reactions. In this case, the ion has an atomic number of 6.
Answer:Benzene typically undergoes reactions in which the aromatic ring is preserved.B. Benzene typically reacts with electrophiles where an aromatic proton is substituted by the electrophile
Explanation:
The reactions of benzene are such that the aromatic ring is not destroyed. Addition reactions destroy the aromatic ring hence they aren't typical reactions of benzene. Benzene rings are attacked by electrophiles in which reaction a proton is substituted by the electrophile. Alkenes only undergo addition reaction and not electrophilic substitution reaction.
Answer:
ozone. CFCs drift slowly upward to the stratosphere, where they are broken up by ultraviolet radiation, releasing chlorine atoms, which are able to destroy ozone molecules.