Answer:
The answer to your question is P2 = 9075000 atm
Explanation:
Data
Pressure 1 = P1 = 5 atm
Volume 1 = V1 = 363 ml
Pressure 2 = P2 = ?
Volume 2 = 0.0002 ml
Process
To solve this problem use Boyle's law
P1V1 = P2V2
-Solve for P2
P2 = P1V1/V2
-Substitution
P2 = (5 x 363) / 0.0002
-Simplification
P2 = 1815 / 0.0002
-Result
P2 = 9075000 atm
Answer:
i will do a joke... hmmm...
Explanation:
why did the nurse need a red pen?
To draw out blood. lol
The pebbles become smooth and even because of erosion. the waves from the sea rub against the pebbles this is erosion. x
Answer:
c.
Explanation:
If the object starts to slide it must be on a slope.
There are 2 forces acting on the object - gravity and the friction between the object and the surface.
If sliding starts then the forces must be unbalanced.
The force of gravity is greater than the friction.
Answer:
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL
<em><u>Glass that will float</u></em>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL
Explanation:
Density is the property of matter that states the ratio of the amount of matter, its mass, to the space occupied by it, its volume.
So, the mathematical expression for the density is:
By comparing the density of a material with the density of a liquid, you will be able to determine whether object will float, sink, or do neither when immersed in the liquid.
The greater the density of an object the more it will try to sink in the liquid.
As you must have experienced many times an inflatable ball (whose density is very low) will float in water, but a stone (whose denisty is greater) will sink in water.
The flotation condition may be summarized by:
- When the density of the object < density of the liquid, the object will float
- When the density of the object = density of the liquid: the object will neither float nor sink
- When the density of the object > density of the liquid: the object will sink.
<em><u>Glass that will sink</u></em>
- alkali zinc borosilicate with a density of 2.57 g/mL in a solution with a density of 2.46 g/mL, because 2.57 > 2.46.
- potash soda lead with a density of 3.05 g/mL in a solution with a density of 1.65 g/mL, because 3.05 > 1.65.
<u><em>Glass that will float</em></u>
- soda borosilicate with a density of 2.27 g/mL in a solution with a density of 2.62 g/mL, because 2.27 < 2.62.
- alkali strontium with a density of 2.26 g/mL in a solution with a density of 2.34 g/mL, because 2.26 < 2.34.
<em><u>Glass that will not sink or float</u></em>
- potash borosilicate with a density of 2.16 g/mL in a solution with a density of 2.16 g/mL, because 2.16 = 2.16