Answer:

Explanation:
Due to Coulomb´s law electric force can be described by the formula
, where K is the Coulomb´s constant (
),
= Charge 1 (Na+ in this case),
is the charge 2 (Cl-) and r is the distance between both charges.
Work made by a force is W=F.d and total work produced is the change in energy between final and initial state. this is
.
so we have ![W=W_{f} -W_{i} =(K\frac{q_{(Na+)}q_{(Cl-)}rf}{r_{f} ^{2}})-(K\frac{q_{(Na+)}q_{(Cl-)}ri}{r_{i} ^{2}})=Kq_{(Na+)}q_{(Cl-)[\frac{1}{{r_{f}}} -\frac{1}{{r_{i}}}]](https://tex.z-dn.net/?f=W%3DW_%7Bf%7D%20-W_%7Bi%7D%20%3D%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Drf%7D%7Br_%7Bf%7D%20%5E%7B2%7D%7D%29-%28K%5Cfrac%7Bq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%7Dri%7D%7Br_%7Bi%7D%20%5E%7B2%7D%7D%29%3DKq_%7B%28Na%2B%29%7Dq_%7B%28Cl-%29%5B%5Cfrac%7B1%7D%7B%7Br_%7Bf%7D%7D%7D%20-%5Cfrac%7B1%7D%7B%7Br_%7Bi%7D%7D%7D%5D)
Given that ri= 1.1nm=
and rf= infinite distance
![W=(9x10^{9})(1.6x10^{-19})(-1.6x10^{-19})[\frac{1}{\alpha }-\frac{1}{(1.1x10^{-9})}]=2.1x10^{-19}J](https://tex.z-dn.net/?f=W%3D%289x10%5E%7B9%7D%29%281.6x10%5E%7B-19%7D%29%28-1.6x10%5E%7B-19%7D%29%5B%5Cfrac%7B1%7D%7B%5Calpha%20%7D-%5Cfrac%7B1%7D%7B%281.1x10%5E%7B-9%7D%29%7D%5D%3D2.1x10%5E%7B-19%7DJ)
One mole of Fe(NO3)3, or iron(III) nitrate, has three moles of nitrate molecules, which have three moles of oxygen atoms each. We can show this mathematically:
1 mole Fe(NO3)3 * (3 moles NO3)/(1 mole Fe(NO3)3) = 3 moles NO3
3 moles NO3 * (3 moles Oxygen)/(1 mole NO3) = 9 moles Oxygen
9 moles of Oxygen in one mole Fe(NO3)3
Answer is: Keq expression for this system is Keq = <span>[O</span>₂<span> ]</span> · [H₂<span>]</span>² ÷ [H₂O<span>]</span>².<span>
Chemical reaction: 2H</span>₂O(g) ⇄ O₂(g) + 2H₂(g).
The equilibrium constant<span> (Keq) is a ratio of the concentration of the products (in this reaction oxygen and hydrogen) to the concentration of the reactants (in this reaction water).</span>