Answer:
Model D
Explanation:
Bohr's Model has a planetary look. Where the electrons are in an orbit.
Answer:Cant see the picture cause its too big
Explanation:
Answer:
0.03g/mL
Explanation:
Given parameters include:
Five μL of a 10-to-1 dilution of a sample; This implies the Volume of dilute sample is given as 5 μL
Dilution factor = 10-to-1
The absorbance at 595 nm was 0.78
Mass of the diluted sample = 0.015 mg
We need to first determine the concentration of the diluted sample which is required in calculating the protein concentration of the original solution.
So, to determine the concentration of the diluted sample, we have:
concentration of diluted sample = 
=
(where ∝ was use in place of μ in the expressed fraction)
= 0.003 mg/μL
The dilution of the sample is from 10-to-1 indicating that the original concentration is ten times higher; as such the protein concentration of the original solution can be calculated as:
protein concentration of the original solution = 10 × concentration of the diluted sample.
= 10 × 0.003 mg/μL
= 0.03 mg/μL

= 0.03g/mL
Hence, the protein concentration of the original solution is known to be 0.03g/mL
Slower should be the answer for this
Answer:
CONNECTIONS: WAVES
There are many types of waves, such as water waves and even earthquakes. Among the many shared attributes of waves are propagation speed, frequency, and wavelength. These are always related by the expression vW=fλ. This module concentrates on EM waves, but other modules contain examples of all of these characteristics for sound waves and submicroscopic particles.
As noted before, an electromagnetic wave has a frequency and a wavelength associated with it and travels at the speed of light, or c. The relationship among these wave characteristics can be described by vW = fλ, where vW is the propagation speed of the wave, f is the frequency, and λ is the wavelength. Here vW = c, so that for all electromagnetic waves, c = fλ.
Thus, for all electromagnetic waves, the greater the frequency, the smaller the wavelength
Explanation:
helps?
if not so sry :(