Hello!
The name for continents in one landmass surrounded by gigantic ocean is Pangaea.
This name is originated from the Greek words Pan ("all") and Gaia ("Earth"). It describes the supercontinent that would have existed in the Cenozoic and Mesozoic periods by the joining of all continents that we know them today.
The gigantic ocean that surrounded it is called Panthalassa, from Greek Pan ("all") and thálassa ("sea").
Have a nice day!
Answer:
Explanation:
given that
mass = 10kg
distance = 4m
force = 50N
to calculate the workdone when the force is applied in the same direction of displacement
mathematically,
workdone = force × distance
Workdone = 50 × 4
workdone = 200 joules
2) to calculate the workdone at an angle of 30° with the displacement we apply the formula
workdone = force × distance × cos Ф
workdone = 50 × 4 × cos 30°
workdone = 200 × 0.866
workdone = 173 . 2 joules
<span>3.2 grams
The first thing to do is calculate how many half lives have expired. So take the time of 72 seconds and divide by the length of a half life which is 38 seconds. So
72 / 38 = 1.894736842
So we're over 1 half life, but not quite 2 half lives. So you'll have something less than 12/2 = 6 grams, but more than 12/4 = 3 grams.
The exact answer is done by dividing 12 by 2 raised to the power of 1.8947. So let's calculate 2^1.8947 power
= 12 g / (e ^ ln(2)*1.8947)
= 12 g / (e ^ 0.693147181 * 1.8947)
= 12 g / (e ^ 1.313305964)
= 12 g / 3.718446464
= 3.227154167 g
So rounded to 2 significant figures gives 3.2 grams.</span>
Answer:
Explanation:We should know that weight = mass * gravity.
That is weight equals mass times gravity.
Gravity is a force of attraction between any two bodies in the universe. It is directly proportional to product of their masses and inversely proportional to the square of the distance between them.
Gravity is generally measured in terms of acceleration due to gravity, denoted as g. For Earth it is, 9.8 m/s². And for moon, it is about 1.62 m/s².
On Earth, your weight is 70 kg = W
W = mass x 9.8
70 = mass x 9.8
Your mass is 70/ 9.8
i.e approximately 7.14
Weight at the Moon, W' = 7.14 x 1.62
Hence, your weight on the surface of the moon is just 11.56 kg.
Congratulations, you've lost about 58.14 kilograms without any hard exercise. And you're as light as a Sweedish Vallhund! Cheers!