1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
just olya [345]
2 years ago
5

An object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t> 0, where x(t) is measured in

cm and t in seconds. Give decimal answers below. (a) How many complete back-and-forth motions (from the origin to the right, back to the origin, to the left and finally back to the origin) does the object make in one second? (b) What is t the first time that the object is at its farthest right? (c) At the time found in part (b), what is the object's velocity? (d) At the time found in part (b), what is the object's acceleration?
Physics
1 answer:
CaHeK987 [17]2 years ago
8 0

Answer:

a.) 10Hz

b.) 0.1 s

c.) 187.4 m/s

d.) -412.6 m/s^2

Explanation:

Given that an object is moving back and forth on the x-axis according to the equation x(t) = 3sin(20πt), t> 0, where x(t) is measured in cm and t in seconds. Give decimal answers below.

(a) How many complete back-and-forth motions (from the origin to the right, back to the origin, to the left and finally back to the origin) does the object make in one second?

from the equation given,  the angular speed w = 20π

but w = 2πf

where f = frequency.

substitute w for 20π

20π = 2πf

f = 20π/2π

f = 10 Hz

(b) What is t the first time that the object is at its farthest right?

since F = 1/T

T = 1 / f

T = 1/10

T = 0.1 s

Therefore, the t of  first time that the object is at its farthest right is 0.1 s

(c) At the time found in part (b), what is the object's velocity?

The velocity can be found by differentiating the equation;

x(t) = 3sin(20πt)

dx/dt = 60πcos(20πt)

where dx/dt  = velocity V

V = 60πcos(20π * 0.1)

V = 187.4 m/s

(d) At the time found in part (b), what is the object's acceleration?

to get the acceleration, differentiate equation  V = 60πcos(20πt)

dv/dt = -1200πSin(20πt)

dv/dt = acceleration a

a = -1200πSin(20πt)

substitute t into the equation

a = -1200πSin(20π * 0.1)

a = - 412.6 m/s^2

You might be interested in
Which of the following has potential but not kinetic energy?
gavmur [86]

The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.


Hope this helps!

7 0
3 years ago
Was the Big Bang a loud explosion? Why?
Sholpan [36]

Answer:

bc it was a universal explosion and It started the future

Explanation:

FACTS

6 0
3 years ago
Read 2 more answers
All please..............
rodikova [14]
4 water has a low heat capacity and a high vaporization temperate and coasts have low temps
3 0
3 years ago
The earth rotates about its pole once every 24 hrs. The distance from the pole to a location on the Earth is 35* north latitude
Oksana_A [137]
The angular velocity, ω= 
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s
4 0
2 years ago
What do you think we call this graphical representation based on your prior experience with electric fields and electric field l
slavikrds [6]

Answer:

Explanation:

The strengthcompassion field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines. The direction of the electric field is tangent to the field line at any point in space. Field lines can never cross. These pattern of lines, sometimes referred to as electric field lines, point in the direction that a positive test charge would accelerate if placed upon the line. As such, the lines are directed away from positively charged source charges and toward negatively charged source charges.

Rules for drawing electric field lines

1. Electric field lines are always drawn from High potential to

low potential.

2. Two electric field lines can never intersect each other.

3. The net electric field inside a Conductor is Zero.

4. Electric field line from a positive charge is drawn radially outwards and from a negative charge radially inwards.

5. The density of electric field lines tells the strength of the electric field at that region.

6. Electric field lines terminate Perpendicularly to the surface of a conductor.

A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. You can tell if a quantity is a vector by whether or not it has a direction associated with it.

So, electric fields are vector quantity due to the fact any student can tell you that a compass is used to determine which direction is north.

Since the compass always point northward, then it has a direction and magnitude and so it is a vector quantity

6 0
3 years ago
Other questions:
  • The energy a glass has as you are holding it still above a table is
    6·2 answers
  • A brick is dropped from rest from the top of a building through air (air resistance is present) to the ground below. how does th
    15·1 answer
  • A train is approaching a signal tower at a speed of 40m/s. The train engineer sounds the 1000-Hz whistle, while a switchman in t
    11·1 answer
  • A jet lands at 80.0 m/s, the pilot applying the brakes 2.0 s after landing.
    8·1 answer
  • During a solar eclipse, the Moon, Earth, and Sun all lie on the same line, with the Moon between the Earth and the Sun. The Moon
    9·1 answer
  • What is the equivalent resistance of the circuit? A: 0.500 ohms B: 120.0 ohms C: 2.00 ohms D: 60.0 ohms
    12·2 answers
  • What other types of energy are present when turning a generator that were not mention in question ? Explain where in the process
    7·1 answer
  • A wave with a frequency of 56 Hz has a wavelength of 27 meters. At what speed will this wave travel?
    8·1 answer
  • Give three examples of properties of elements
    5·2 answers
  • 35 POINTS
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!