The answer would be option D "a ball sitting on a shelf." Potential energy is the amount of energy a object has while it's at rest.. (or not moving) Kinetic energy is how much energy a object is while it's moving. So in this case it's option D because a ball sitting on a shelf isn't moving therefore it has potential energy. It's not option A because thats a example of kinetic energy since how the roller coaster is moving. It's not option B because it's kinetic energy because the bike is moving. It's also not option C because it's kinetic energy because the bird is moving.
Hope this helps!
Answer:
bc it was a universal explosion and It started the future
Explanation:
FACTS
4 water has a low heat capacity and a high vaporization temperate and coasts have low temps
The angular velocity, ω=
2π/t; t = 24 hrs = 24 x 3600 seconds = 86400 s
ω = 7.27 x 10⁻⁵
v = ωr
= 7.27 x 10⁻⁵ x 3242.8 x 1.6 x 1000 (converting miles to meters)
= 377.2 m/s
Answer:
Explanation:
The strengthcompassion field is proportional to the closeness of the field lines—more precisely, it is proportional to the number of lines per unit area perpendicular to the lines. The direction of the electric field is tangent to the field line at any point in space. Field lines can never cross. These pattern of lines, sometimes referred to as electric field lines, point in the direction that a positive test charge would accelerate if placed upon the line. As such, the lines are directed away from positively charged source charges and toward negatively charged source charges.
Rules for drawing electric field lines
1. Electric field lines are always drawn from High potential to
low potential.
2. Two electric field lines can never intersect each other.
3. The net electric field inside a Conductor is Zero.
4. Electric field line from a positive charge is drawn radially outwards and from a negative charge radially inwards.
5. The density of electric field lines tells the strength of the electric field at that region.
6. Electric field lines terminate Perpendicularly to the surface of a conductor.
A vector quantity has a direction and a magnitude, while a scalar has only a magnitude. You can tell if a quantity is a vector by whether or not it has a direction associated with it.
So, electric fields are vector quantity due to the fact any student can tell you that a compass is used to determine which direction is north.
Since the compass always point northward, then it has a direction and magnitude and so it is a vector quantity