Answer:
<h2>3.3 J</h2>
Explanation:
The potential energy of a body can be found by using the formula
PE = mgh
where
m is the mass
h is the height
g is the acceleration due to gravity which is 10 m/s²
From the question we have
PE = 1.5 × 10 × 0.22
We have the final answer as
<h3>3.3 J</h3>
Hope this helps you
Answer:
Because you have a greater understanding of the mentality and conduct of individuals you care about, you are better able to understand their perspective and are more likely to recognize possible situational factors for their behavior.
<span>First sum applied the Newton's second law motion: F = ma
Force = mass* acceleration
This motion define force as the product of mass times Acceleration (vs.Velocity). Since acceleration is the change in velocity divided by time,
force=(mass*velocity)/time
such that, (mass*velocity)/time=momentum/time
Therefore we get mass*velocity=momentum
Momentum=mass*velocity
Elephant mass=6300 kg; velocity=0.11 m/s
Momentum=6300*0.11
P=693 kg (m/s)
Dolphin mass=50 kg; velocity=10.4 m/s
Momentum=50*10.4
P=520 kg (m/s)
The elephant has more momentum(P) because it is large.</span>
Answer:
39.81 N
Explanation:
I attached an image of the free body diagrams I drew of crate #1 and #2.
Using these diagram, we can set up a system of equations for the sum of forces in the x and y direction.
∑Fₓ = maₓ
∑Fᵧ = maᵧ
Let's start with the free body diagram for crate #2. Let's set the positive direction on top and the negative direction on the bottom. We can see that the forces acting on crate #2 are in the y-direction, so let's use Newton's 2nd Law to write this equation:
- ∑Fᵧ = maᵧ
- T₁ - m₂g = m₂aᵧ
Note that the tension and acceleration are constant throughout the system since the string has a negligible mass. Therefore, we don't really need to write the subscripts under T and a, but I am doing so just so there is no confusion.
Let's solve for T in the equation...
- T₁ = m₂aᵧ + m₂g
- T₁ = m₂(a + g)
We'll come back to this equation later. Now let's go to the free body diagram for crate #1.
We want to solve for the forces in the x-direction now. Let's set the leftwards direction to be positive and the rightwards direction to be negative.
The normal force is equal to the x-component of the force of gravity.
- (F_n · μ_k) - m₁g sinΘ = m₁aₓ
- (F_g cosΘ · μ_k) - m₁g sinΘ = m₁aₓ
- [m₁g cos(30) · 0.28] - [m₁g sin(30)] = m₁aₓ
- [(6)(9.8)cos(30) · 0.28] - [(6)(9.8)sin(30)] = (6)aₓ
- [2.539595871] - [-58.0962595] = 6aₓ
- 60.63585537 = 6aₓ
- aₓ = 10.1059759 m/s²
Now let's go back to this equation:
We have 3 known variables and we can solve for the tension force.
- T = 2(10.1059759 + 9.8)
- T = 2(19.9059759)
- T = 39.8119518 N
The tension force is the same throughout the string, therefore, the tension in the string connecting M2 and M3 is 39.81 N.