<span>95 km/h = 26.39 m/s (95000m/3600 secs)
55 km/h = 15.28 m/s (55000m/3600 secs)
75 revolutions = 75 x 2pi = 471.23 radians
radius = 0.80/2 = 0.40m
v/r = omega (rad/s)
26.39/0.40 = 65.97 rad/s
15.28/0.40 = 38.20 rad/s
s/((vi + vf)/2) = t
471.23 /((65.97 + 38.20)/2) = 9.04 secs
(vf - vi)/t = a
(38.20 - 65.97)/9.04 = -3.0719
The angular acceleration of the tires = -3.0719 rad/s^2
Time is required for it to stop
(0 - 38.20)/ -3.0719 = 12.43 secs
How far does it go?
65.97 - 38.20 = 27.77 M</span>
Answer:
First Quarter and Third Quarter.
Explanation:
Tides are formed as a consequence of the differentiation of gravity due to the Moon across to the Earth sphere.
Since gravity variates with the distance:
(1)
Where m1 and m2 are the masses of the two objects that are interacting and r is the distance between them.
For example, seeing the image below, point A is closer to the Moon than point b, and at the same time the center of mass of the Earth will feel more attracted to the Moon than point B. Therefore, that creates a tidal bulge in point A and point B.
When the Sun and the Moon are alight with respect to the Earth, then the Sun tidal force contributes to the tidal force of the Moon over the Earth. That makes the high tides even higher (spring tides).
However, when the Sun is not in the same line than the Moon (the Moon is at 90° with respect to the Sun), then the low tides are higher and the high tides are lower. That scenario is known as neap tides.
Therefore, that happens when the Moon is at First Quarter and Third Quarter.
Answer:
Therefore the surface area of the balloon is increased at 4 cm³/s.
Explanation:
The balloon is being filled with air at a rate of 10 cm³/s
It means the volume of the balloon is increased at a rate 10 cm³/s.
i.e 
Consider r be the radius of the balloon.
The volume of of a sphere is

Differentiate with respect to t



The surface of area of the balloon is(S) = 

Differentiate with respect to t


Putting the value of


Given that r = 5 cm
=4 cm³/s
Therefore the surface area of the balloon is increased at 4 cm³/s.