1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
lorasvet [3.4K]
3 years ago
13

Circuit A

Physics
2 answers:
Licemer1 [7]3 years ago
3 0
By V=IR
A: 24=I*20
I = 1.2A

B: 220 = I*250
I = 0.88A

C: 6= I*3
I = 2 A

C,A,B
I am Lyosha [343]3 years ago
3 0

Answer:

C,A,B

Explanation:

You might be interested in
Plz help with these 4
Airida [17]

Answer:

1) The human skeleton performs six major functions: support, movement, protection, production of blood cells, storage of minerals, and endocrine regulation. protection of internal organs

2) Joints are where two bones meet. They make the skeleton flexible — without them, movement would be impossible. Joints allow our bodies to move in many ways.

3)A joint is a point where two or more bones meet. There are three main types of joints; Fibrous (immovable), Cartilaginous (partially moveable) and the Synovial (freely moveable) joint

4)A ligament is a fibrous connective tissue which attaches bone to bone, and usually serves to hold structures together and keep them stable.

Explanation:

go-gle your welcome ;)

5 0
3 years ago
Read 2 more answers
The law of reflection states that if the angle of incidence is 39 degrees, the angle of reflection is ___ degrees.
marishachu [46]
It's 39 degrees, too


good luck
8 0
3 years ago
A 56 kg sprinter, starting from rest, runs 49 m in 7.0 s at constant acceleration.what is the sprinter's power output at 2.0 s,
alexgriva [62]
The sprinter is in uniform accelerated motion, and its initial velocity is zero, so the relationship betwen space (S) and time (t) is
S= \frac{1}{2} a t^2
where a is the acceleration. Using the data of the problem, we can find a:
a= \frac{2S}{t^2} = \frac{2 \cdot 49 m}{(7.0 s)^2} =2.0 m/s^2
So now we can solve the 3 parts of the problem.

a) power output at t=2.0 s
The velocity at t=2.0 s is
v(t)=at=(2.0 m/s^2)(2.0 s)=4.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(4.0 m/s)^2=448 J

and so the power output is
P= \frac{E}{t} = \frac{448 J}{2.0 s} =224 W

b) power output at t=4.0s 
The velocity at t=4.0 s is
v(t)=at=(2.0 m/s^2)(4.0 s)=8.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(8.0 m/s)^2=1792 J

and so the power output is
P= \frac{E}{t} = \frac{1792 J}{4.0 s} =448 W

c) Power output at t=6.0 s
The velocity at t=2.0 s is
v(t)=at=(2.0 m/s^2)(6.0 s)=12.0 m/s

the kinetic energy of the sprinter is
K= \frac{1}{2} mv^2= \frac{1}{2}(56 kg)(6.0 m/s)^2=4032 J

and so the power output is
P= \frac{E}{t} = \frac{4032 J}{6.0 s} =672 W
8 0
3 years ago
A student finds an unlabeled liquid container in his lab. He notices that the container has two liquids. Since the two liquids h
raketka [301]

Answer:

\rho = 1848.03 kg m^{-3}

Explanation:

given data:

density of water \rho = 1 gm/cm^3 = 1000 kg/m^3

height  of water  = 20 cm  =0.2 m

Pressure  p = 1.01300*10^5 Pa

pressure at bottom

P =  P_{fluid} + P_{h_2 o}

P   = P_{fluid}  + \rho g h

P_{fluid}  = P - \rho g h

                 = 1.01300*10^5 - 1000*0.2*9.8

                 = 99340 Pa

p_{fluid}  = P_{atm} + \rho g h_{fluid}                       h_[fluid} = 0.307m

99340 = 104900 + \rho *9.8*0.307

\rho = 1848.03 kg m^{-3}

5 0
3 years ago
A car that is traveling in a straight line at 40 km/h can brake to a stop within 20 m. If the same car is traveling at 120 km/h
stiks02 [169]

Answer:

180 m

Explanation:

Case 1.

U = 40 km/h = 11.1 m/s, V = 0, s = 20 m

Let a be the acceleration.

Use third equation of motion

V^2 = u^2 + 2 as

0 = 11.1 × 11.1 - 2 × a × 20

a = 3.08 m/s^2

Case 2.

U = 220 km/h = 33.3 m/s, V = 0

a = 3.08 m/s^2

Let the stopping distance be x.

Again use third equation of motion

0 = 33.3 × 33.3 - 2 × 3.08 × x

X = 180 m

8 0
3 years ago
Other questions:
  • Doug is driving a golf ball off the tee. His downswing takes 0.50sec from the top of the swing until ball impact. At the top of
    13·1 answer
  • The principle of work states that the ratio of work output to work input is always
    15·1 answer
  • A doctor examines a mole with a 15.0 cm focal length magnifying glass held 13.5 cm from the mole. Where is the image? what is it
    15·1 answer
  • Which of the following is located in the stratosphere? (10 points) Weather, The ozone layer, UV rays, Birds.
    8·2 answers
  • When calculating the net electrostatic force, a negative value indicates that the two charged objects involved __________.
    8·1 answer
  • You need to determine the density of a ceramic statue. if you suspend it from a spring scale, the scale reads 32.4 n . if you th
    7·1 answer
  • Which statement is true for a sound wave entering an area of warmer air?
    9·2 answers
  • A​ blimp, suspended in the air at a height of 600 ​feet, lies directly over a line from a sports stadium to a planetarium. If th
    14·1 answer
  • An effective early childhood curriculum can be​
    13·1 answer
  • In vehicles equipped with an anti-lock brake system
    11·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!