Well, the figure seems to report that velocity is measured in m/s²... That label should say m/s. (Unless of course this is the graph of acceleration over time, but then the answer would probably be more complicated than the given choices.)
If the graph indeed shows velocity, and the unit is just a typo, then the displacement from A to D is equal to the area under the curve.
From A to B, the area is of a triangle with height 4 m/s and base 1 s, hence the area is 1/2 • (4 m/s) • (1 s) = 2 m.
From B to C, it's a rectangle with length 3 s and height 4 m/s, hence with area (3 s) • (4 m/s) = 12 m.
From C to D, it's a trapezoid with "height" 2 s and bases 4 m/s and 2 m/s, hence with area 1/2 • (4 m/s + 2 m/s) • (2 s) = 6 m.
The total displacement is then 2 m + 12 m + 6m = 20 m.
Answer:
<h3>The 28 loops wound on the square armature</h3>
Explanation:
Peak output voltage
V
Area of square armature 
Magnetic field
T
Angular frequency 
According to the law of electromagnetic induction,

Where
number of loops of wire.

≅ 28
Thus, 28 loops of wire should be wound on the square armature.
An independent variable is a variable that does not depend on anything. It is manipulated to determine the value of a dependent variable<span>. The dependent variable is what is being measured in an experiment or evaluated in a mathematical equation and the independent variables are the inputs to that measurement. Example: Time would always be an independent variable because nothing affects time, however, time can affect everything. </span>
<u>Answer:</u>
<em>1. A NaCl solution with a concentration of 50g/100mL of water at 40°C:</em> The NaCl solution with a given concentration is saturated at this temperature .As the temperature increases the solution will more dissolves.
<em>2. A sugar solution with a concentration of 200g/100mL of water at 40°C: </em>The sugar solution with a given concentration is saturated at this temperature. As the temperature increases the solution will more dissolves.
<em>3. A sugar solution with a concentration of 240g/100mL of water at 40°C:</em> The sugar solution with a given concentration is saturated at given temperature.