Answer:
Gay-Lussac's law states that pressure and temperature are directly proportional
Explanation:
Gay-Lussac's law states that pressure and temperature are directly proportional. This always occurs if the volume keeps in constant.
n and V are not directly proportional, they are the same.
At Charles Gay Lussac's law
V1 = V2
n1 = n2
T1 < T2
P1 < P2
P1 / T1 = P2 / T2
If the pressure is contant:
V1 / T1 = V2 /T2
The statement which best describes the law of conservation of mass is A) when a physical or a chemical change occurs, matter is not created or destroyed. The law states that matter cannot be created or destroyed by ordinary chemical or physical changes, which means that <span>the mass of all the components of a chemical reaction can be measured before and after the change in order prove that the mass is constant. So, keep in mind that </span><span>the mass of participating products is always the same as the mass of all the reactants.</span>
Answer:
Speciation can be driven by evolution, which is a process that results in the accumulation of many small genetic changes called mutations in a population over a long period of time. ... Natural selection can result in organisms that are more likely to survive and reproduce and may eventually lead to speciation.
I hope it's helpful!
Based on the data provided;
- number of moles of helium gas is 1.25 moles
- pressure at peak temperature is 259.3 kPa
- internal pressure is above 256 kPa, therefore, the balloon will burst.
- pressure should be reduced to a value less than 256 kPa by reducing the temperature
<h3>What is the ideal has equation?</h3>
The ideal gas equation relatesthe pressure, volume, moles and temperature of a gas.
The moles of helium gas is calculated using the Ideal gas equation:
n is the number of moles of gas
R is molar gas constant = 8.314 L⋅kPa/Kmol
P is pressure = 239 kPa
T is temperature = 21°C = 294 K
V is volume = 12.8 L
Therefore;
n = PV/RT
n = 239 × 12.8 / 8.314 × 294
n = 1.25 moles
The number of moles of helium gas is 1.25 moles
At peak temperature, T = 46°C = 319 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 319/294
P2 = 259.3 kPa
The pressure at peak temperature is 259.3 kPa
At 42°C, T = 315 K
Using P1/T1 = P2/T2
P2 = P1T2/T1
P2 = 239 × 315/294
P2 = 256.07 kPa
Since the internal pressure is above 256 kPa, the balloon will burst.
The pressure should be reduced to a value less than 256 kPa by reducing the temperature.
Learn more about gas ideal gas equation at: brainly.com/question/12873752
Out of the options, the best indicator is a color change since it is the only one that can't really be blamed on a physical change. you will eventually notice that during qualitative labs and some quantitative labs, usually the thing that you are looking for is either color change or the production of a precipitate to indicate the presence of a chemical reaction