Answer:
The answer is C. 120,000 J.
Explanation:
Answer: you subtract the number of protons from the mass number, on the periodic table your atomic number is your protons and your atomic mass is the mass number
Explanation:
Explanation:
For each object, the initial potential energy is converted to rotational energy and translational energy:
PE = RE + KE
mgh = ½ Iω² + ½ mv²
For the marble (a solid sphere), I = ⅖ mr².
For the basketball (a hollow sphere), I = ⅔ mr².
For the manhole cover (a solid cylinder), I = ½ mr².
For the wedding ring (a hollow cylinder), I = mr².
If we say k is the coefficient in each case:
mgh = ½ (kmr²) ω² + ½ mv²
For rolling without slipping, ωr = v:
mgh = ½ kmv² + ½ mv²
gh = ½ kv² + ½ v²
2gh = (k + 1) v²
v² = 2gh / (k + 1)
The smaller the value of k, the higher the velocity. Therefore:
marble > manhole cover > basketball > wedding ring
<h2>When two object P and Q are supplied with the same quantity of heat, the temperature change in P is observed to be twice that of Q. The mass of P is half that of Q. The ratio of the specific heat capacity of P to Q</h2>
Explanation:
Specific heat capacity
It is defined as amount of heat required to raise the temperature of a substance by one degree celsius .
It is given as :
Heat absorbed = mass of substance x specific heat capacity x rise in temperature
or ,
Q= m x c x t
In above question , it is given :
For Q
mass of Q = m
Temperature changed =T₂/2
Heat supplied = x
Q= mc t
or
X=m x C₁ X T₁
or, X =m x C₁ x T₂/2
or, C₁=X x 2 /m x T₂ (equation 1 )
For another quantity : P
mass of P =m/2
Temperature= T₂
Heat supplied is same that is : X
so, X= m/2 x C₂ x T₂
or, C₂=2X/m. T₂ (equation 2 )
Now taking ratio of C₂ to c₁, We have
C₂/C₁= 2X /m.T₂ /2X /m.T₂
so, C₂/C₁= 1/1
so, the ratio is 1: 1