Since energy cannot be created nor destroyed, the change in energy of the electron must be equal to the energy of the emitted photon.
The energy of the emitted photon is given by:

where
h is the Planck constant
f is the photon frequency
Substituting

, we find

This is the energy given to the emitted photon; it means this is also equal to the energy lost by the electron in the transition, so the variation of energy of the electron will have a negative sign (because the electron is losing energy by decaying from an excited state, with higher energy, to the ground state, with lower energy)
Answer:
M_c = 100.8 Nm
Explanation:
Given:
F_a = 2.5 KN
Find:
Determine the moment of this force about C for the two cases shown.
Solution:
- Draw horizontal and vertical vectors at point A.
- Take moments about point C as follows:
M_c = F_a*( 42 / 150 ) *144
M_c = 2.5*( 42 / 150 ) *144
M_c = 100.8 Nm
- We see that the vertical component of force at point A passes through C.
Hence, its moment about C is zero.
Answer:
A
Explanation:
Analytical people are less responsive to others. They hence tend to focus more on work than people and are less interested in leading, being happier to work by themselves. They may be prudent and systematic, making them good at analytic work.
Some character traits of Analytical people
Focuses on work and working more than people
Likes to be correct and will take time to ensure this
Thoughtful, careful fact-oriented and precise
Good at problem-solving
Likes organization and structure
Avoids working in a group, preferring to work alone
Can be over-critical and unresponsive
Cautious in decision-making
When stressed may withdraw or become headstrong
Answer:
θ_p = 53.0º
Explanation:
For reflection polarization occurs when a beam is reflected at the interface between two means, the polarization in total when the angle between the reflected and the transmitted beam is 90º
Let's write the transmission equation
n1 sin θ₁ = ne sin θ₂
The angle to normal (vertcal) is
180 = θ2 + 90 + θ_p
θ₂ = 90 - θ_p
Where θ₂ is the angle of the transmitted ray θ_p is the angle of the reflected polarized ray
We replace
n1 sin θ_p = n2 sin (90 - θ_p)
Let's use the trigonometry relationship
Sin (90- θ_p) = sin 90 cos θ_p - cos 90 sin θ_p = cos θ_p
In the law of reflection incident angle equals reflected angle,
ni sin θ_p = ns cos θ_p
n₂ / n₁ = sin θ_p / cos θ_p
n₂ / n₁ = tan θ_p
θ_p = tan⁻¹ (n₂ / n₁)
Now we can calculate it
The refractive index of air is 1 (n1 = 1) the refractive index of seawater varies between 1.33 and 1.40 depending on the amount of salts dissolved in the water
n₂ = 1.33
θ_p = tan⁻¹ (1.33 / 1)
θ_p = 53.0º
n₂ = 1.40
θ_p = tan⁻¹ (1.40 / 1)
Tep = 54.5º
Answer:
Charge on each is 2 x 10⁻¹⁰.
Explanation:
We know that Force between two point charges is given b the Coulomb's law as:
F = kq₁q₂/r^2
k = 9 x 10^9
r = 3.00 cm
= 0.03 m
q₁ = q₂
F = 4.00 x 10^-7
Rearranging the formula, we get:
F = k q²/r²
q² = Fr²/k
q² = 4 x 10⁻⁷ x 0.03²/(9x10⁹)
q² = 4 x 10⁻²⁰
q = 2 x 10⁻¹⁰
As there is force of repulsion between the charges, the charges must be both positive or both negative.