Answer:
<em>Hydrogen bond is the attractive force between the hydrogen attached electronegative atom </em>
Explanation:
Answer:
536,904 J/s
Explanation:
The energy output from motor is the input energy in the machine.
We know that efficiency is percentage energy ouput to energy input, and expressed as

Where n and E represent efficiency and energy respectively, subscripts o and i represent output and input respectively. Since for the machine we have the input energy then the output will be the product of efficiency and input energy
Energy output=0.6*1200 hp=720 hp
Converting hp to J/s we multiply by 745.7
Energy is 720*745.7=536,904 J/s
To find:
The equation to find the period of oscillation.
Explanation:
The period of oscillation of a pendulum is directly proportional to the square root of the length of the pendulum and inversely proportional to the square root of the acceleration due to gravity.
Thus the period of a pendulum is given by the equation,

Where L is the length of the pendulum and g is the acceleration due to gravity.
On substituting the values of the length of the pendulum and the acceleration due to gravity at the point where the period of the pendulum is being measured, the above equation yields the value of the period of the pendulum.
Final answer:
The period of oscillation of a pendulum can be calculated using the equation,
Answer:
160m/s
Explanation:
The speed of a wave is related to its frequency and wavelength, according to this equation:
v=f ×λ
The freezing point is the same as the melting point.
If it freezes at -58°C, hence the melting point is also <span>-58°C.</span>