Compounds are molecules with 2 or more elements
So the answer would be the third one
CO2;H2O
The result of the Mexican victory was that fallen defenders
became heroes to the cause of Texan independence.<span> The Battle of
the Alamo took place between February 23 and March 6, 1836 and became the
central episode of the Texas
Revolution . After this thirteen-day battle, the
Mexican troops of General President Antonio
Lopez de Santa Anna began an attack on San Antonio de
Bexar, the current San Antonio in Texas. The Battle of the Alamo fought the
army of Mexico against
a group of Texan rebels, mostly American settlers. More than four thousand
men from Santa Ana stood in front of
the Alamo Fort , the last stronghold of the rebels, which
barely reached 187. The Alamo was not a fortress prepared to withstand a siege.
It is believed that all the rebels of the Alamo died in the siege, but Santa
Anna came to lose up to about 900 men during the days that lasted the fight. However,
the worst result for Santa Ana was precisely the resistance that the Texan
rebels had in the Alamo, which fostered the fighting spirit of the Texans. A
few days later, on March 14, 1836, Texas became independent from Mexico and a
month later, Santa Ana was imprisoned.</span>
The problem states that the distance travelled (d) is
directly proportional to the square of time (t^2), therefore we can write this in
the form of:
d = k t^2
where k is the constant of proportionality in furlongs /
s^2
<span>Using the 1st condition where d = 2 furlongs, t
= 2 s, we calculate for the value of k:</span>
2 = k (2)^2
k = 2 / 4
k = 0.5 furlongs / s^2
The equation becomes:
d = 0.5 t^2
Now solving for d when t = 4:
d = 0.5 (4)^2
d = 0.5 * 16
<span>d = 8 furlongs</span>
<span>
</span>
<span>It traveled 8 furlongs for the first 4.0 seconds.</span>
Answer:
71.4583 Hz
67.9064 N
Explanation:
L = Length of tube = 1.2 m
l = Length of wire = 0.35 m
m = Mass of wire = 9.5 g
v = Speed of sound in air = 343 m/s
The fundamental frequency of the tube (closed at one end) is given by

The fundamental frequency of the wire and tube is equal so he fundamental frequency of the wire is 71.4583 Hz
The linear density of the wire is

The fundamental frequency of the wire is given by

The tension in the wire is 67.9064 N