Answer:
Sum of cubes identity should be used to prove 35 =3+27
Step-by-step explanation:
Prove that : 35 = 8 +27
Polynomial identities are just equations that are true, but identities are particularly useful for showing the relationship between two apparently unrelated expressions.
Sum of the cubes identity:

Take RHS
8+ 27
We can write 8 as
and 27 as
.
then;
8+27 = 
Now, use the sum of cubes identity;
here a =2 and b = 3

or
= LHS proved!
therefore, the Sum of cubes polynomial identity should be used to prove that 35 = 8 +27
Answer:
Definitely Function B
Step-by-step explanation:
Because when you solve the equation it intercepts the X axis
Answer: c. b/35 =11
Step-by-step explanation:
the total beads is over beads of necklace and there’s 11 necklaces needed to make
Here i how I would do it:<span>f(x)=−<span>x2</span>+8x+15</span>
set f(x) = 0 to find the points at which the graph crosses the x-axis. So<span>−<span>x2</span>+8x+15=0</span>
multiply through by -1<span><span>x2</span>−8x−15=0</span>
<span>(x−4<span>)2</span>−31=0</span>
<span>x=4±<span>31<span>−−</span>√</span></span>
So these are the points at which the graph crosses the x-axis. To find the point where it crosses the y-axis, set x=0 in your original equation to get 15. Now because of the negative on the x^2, your graph will be an upside down parabola, going through<span>(0,15),(4−<span>31<span>−−</span>√</span>,0)and(4+<span>31<span>−−</span>√</span>,0)</span>
To find the coordinates of the maximum (it is maximum) of the graph, you take a look at the completed square method above. Since we multiplied through by -1, we need to multiply through by it again to get:<span>f(x)=31−(x−4<span>)2</span></span><span>
Now this is maximal when x=4, because x=4 causes -(x-4)^2 to vanish. So the coordinates of the maximum are (4,y). To find the y, simply substitute x=4 into the equation f(x) to give y = 31. So it agrees with the mighty Satellite: (4,31) is the vertex.</span>
Answer: B) a + c = 10
8a + 5c = 59
Step-by-step explanation:
We know that 10 total people went, so the first equation has to be equal to 10. The total was $59, so the second equation should be set equal to $59. Now that the second equation is for cost, we must make it 8a + 5c to represent the cost of the adult and child tickets which are $8 and $5, respectively.