Answer:
m∠B = 110°
Step-by-step explanation:
We know that,
The sum of the measures of the angles in a pentagon is 540°.
So, we get,
130 + (x-5) + (x+30) + 75 + (x-35) = 540
i.e. 3x + (130+30+75) - (5+35) = 540
i.e. 3x + 235 - 40 = 540
i.e. 3x + 195 = 540
i.e. 3x = 540 - 195
i.e. 3x = 345
i.e. x= 115°
Now, as m∠B = (x-5)° = (115-5)° = 110°
Hence, the measure of angle B is 110°.
Answer:
-4sinθcosθ
Step-by-step explanation:
Note:
1. (a + b)^2 = a^2 + 2ab + b^2
2. (a - b)^2 = a^2 - 2ab + b^2
3. sin^2θ + cos^2θ = 1
(sinθ -cosθ)^2 - (sinθ + cosθ)^2
= sin^2θ - 2sinθcosθ + cos^2θ - (sin^2θ + 2sinθcosθ + cos^2θ)
= sin^2θ + cos^2θ - 2sinθcosθ - (sin^2θ + cos^2θ + 2sinθcosθ)
= 1 - 2sinθcosθ - (1 + 2sinθcosθ)
= 1- 2sinθcosθ -1 - 2sinθcosθ
= - 2sinθcosθ - 2sinθcosθ
= -4sinθcosθ
So what does it want you to what’s the equation