Answer:
The answer is
<h2>3.68 g/mL</h2>
Explanation:
The density of a substance can be found by using the formula
<h3>

</h3>
From the question
mass of substance = 12.50 g
volume = 3.4 mL
The density of the substance is

We have the final answer as
<h3>3.68 g/mL</h3>
Hope this helps you
Answer:
✨ science ✨ and ✨ big brain stuff ✨
Explanation:
sorry
Larger elements are able to form in a supernova explosion because the star releases very large amounts of energy as well as neutrons, which allows elements heavier than iron to be produced.
<h3>What is Supernova?</h3>
This is referred to the explosion of a star and it resulting in larger elements being formed through a process known as nucleosynthesis and is usually accompanied by an increase in the brightness of the star.
The elements produced are usually larger than elements such as iron and examples include uranium, gold etc.
This is therefore the reason why it was chosen as the most appropriate choice.
Read more about Supernova here brainly.com/question/27492871
#SPJ1
This is a case of metric system of measurements. The scale of the metric system only differs by a factor of 10. The scale (from greatest to least) is kiloliter, hectoliter, dekaliter, liter, deciliter, centiliter and milliliter. If the unit is 150 dL, and you want to find the equivalent dkL measurement, just move the decimal point 2 decimals places to the left (just follow the scale). The same procedure is done for the other metric units.
150 dL = 1.5 dkL
150 dL = 15 L
150 dL = 1,500 cL
150 dL = 15,000 mL
From the choices, the answer is letter C.
Answer:
D. Smelting
Explanation:
Bauxite is the aluminum ore from which alumina, also known as aluminum oxide, Al₂O₃, is produced. Bauxite is extracted from the topsoil regions of some subtropical and tropical regions, and the Bayer process is primarily then used to produce alumina from the bauxite.
Aluminum is produced from the alumina by an aluminum smelting process known as the Hall—Heroult electrolytic process which involves the use of a carbon anode and direct current to produce aluminum by reducing the aluminum oxide