The yield of lithium chloride is 1.92 grams.
Option D.
<h3><u>Explanation:</u></h3>
In this reaction, we can see that 1 mole of lithium hydroxide reacts with 1 mole of potassium chloride to produce 1 mole of lithium chloride and 1 mole of potassium hydroxide.
Molecular weight of lithium hydroxide is 24.
Molecular weight of lithium chloride is 42.5.
So 24 grams of lithium hydroxide produces 42.5 grams of lithium chloride.
So, 20 grams of lithium hydroxide produces
grams =11. 29 grams of lithium chloride.
But this is when the yield is 100%.
But yield is 17%.
So the yield is 1.92 grams of lithium chloride.
Sorry If This Is Late***
<u>Elements can't be broken down</u>, into a simplre set of properties. They are one strict unit & cannot be broken down, however they can be added together to make a compound.
HOPE THIS HELPS & good luck <3 !!!!!
Answer:
Solute concentration will afect the rate of a chemical reaction, because you must work with molarity
Explanation:
I think that solute mass may be it can affect the rate of reaction, if you have more mass in a solute, you will also have more moles.
If you want to know more, you have to consider temperature in the reaction and the presence of catalysts. They all, affect reactions.
Answer:
c
Explanation:
the rate of a forward process must be exactly balanced by the rate of the reverse process.
Answer:
Mass = 279.23 g
Explanation:
Given data:
Number of moles of Fe₂O₃ = 3 mol
Number of moles of Al = 5 mol
Maximum amount of iron produced by reaction = ?
Solution:
Chemical equation:
Fe₂O₃ + 2Al → Al₂O₃ + 2Fe
Now we will compare the moles of iron with Al and iron oxide.
Fe₂O₃ : Fe
1 : 2
3 : 2×3 = 6 mol
Al : Fe
2 : 2
5 : 5 mol
The number of moles of iron produced by Al are less so Al is limiting reacting and it will limit the amount of iron so maximum number of iron produced are 5 moles.
Mass of iron:
Mass = number of moles × molar mass
Mass = 5 mol × 55.845 g/mol
Mass = 279.23 g