Answer:
Explanation:
Given that,
5J work is done by stretching a spring
e = 19cm = 0.19m
Assuming the spring is ideal, then we can apply Hooke's law
F = kx
To calculate k, we can apply the Workdone by a spring formula
W=∫F.dx
Since F=kx
W = ∫kx dx from x = 0 to x = 0.19
W = ½kx² from x = 0 to x = 0.19
W = ½k (0.19²-0²)
5 = ½k(0.0361-0)
5×2 = 0.0361k
Then, k = 10/0.0361
k = 277.008 N/m
The spring constant is 277.008N/m
Then, applying Hooke's law to find the applied force
F = kx
F = 277.008 × 0.19
F = 52.63 N
The applied force is 52.63N
Answer:
The index of refraction of the glass is 1.3
Explanation:
Given data:
i = incident angle = 50°
r = refracted angle = 36.1°
The index of refraction according Snell´s law is:

Answer:
6.62607004 x 10^(-34)m²kg/s
Explanation:
This is the constant that shows the value of energy of a photon in relation to it's frequency.
Please let me know if you want this explained further!
Thanks!
Answer:
1) the new power coming from the amplifier is 19.02 W
2) The distance away from the amplifier now is 5.50 m
3) u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther
Explanation:
Lets say that I am at a distance "u" from the TV,
Let I₁ be the corresponding intensity of the sound at my location when sound level is 125dB
SO
S(indB) = 10log (I₁/1₀)
we substitute
125 = 10(I₁/10⁻¹²)
12.5 = log (I₁/10⁻¹²)
10^12.5 = I₁/10^-12
I₁ = 10^12.5 × 10^-12
I₁ = 10^0.5 W/m²
Now I₂ will be intensity of sound when corresponding sound level is 107 dB
107 = 10log(I₂/10⁻²)
10.7 = log(I₂/10⁻¹²)
10^10.7 = I₂ / 10^-12
I₂ = 10^10.7 × 10^-12
I₂ = 10^-1.3 W/m²
Now since we know that
I = P/4πu² ⇒ p = 4πu²I
THEN P₁ = 4πu²I₁ and P₂ =4πu²I₂
Therefore
P₁/P₂ = I₁/I₂
WE substitute
P₂ = P₁(I₂/I₁) = 1200 × ( 10^-1.3 / 10^0.5)
P₂ = 19.02 W
the new power coming from the amplifier is 19.02 W
2)
P₁ = 4πu²I₁
u =√(p₁/4πI₁)
u = √(1200/4π × 10^0.5)
u = 5.50 m
The distance away from the amplifier now is 5.50 m
3)
Let I₃ be the intensity corresponding to required sound level 85 dB
85 = 10log(I₃/10⁻¹²)
8.5 = log (I₃/10⁻¹²)
10^8.5 = I₃ / 10^-12
I₃ = 10^8.5 × 10^-12
I₃ = 10^-3.5 w/m²
Now, I ∝ 1/u²
so I₂/I₃ = u₁²/u²
u₁ = √(I₂/I₃) × u
u₁ = √(10^-1.3 / 10^-3.5) × 5.50
u₁ = 69.24 m
Therefore have to move u₁ - u ( 69.24 - 5.50) = 63.74 farther
This is because strong vibrations will affect the alignment of the magnetic domains within the magnetic material. The domains would change the alignment thus affecting the strength of the magnets which solely depends on the alignment of the domains. The strength of a magnet is the sum of the magnetic fields of all the domains in the magnet. Therefore, the net result will be a weaker magnet or the magnet loosing its magnetism.