Answer:
12m
Explanation:
To obtain the answer to the question given, we must observe the characteristics of image formed by a plane mirror.
The image formed by a plane mirror have the following characteristics:
1. Laterally inverted.
2. Same distance as the object from the mirror.
3. Same height as the object.
4. Virtual.
With the above information, we can calculate the distance between the boy and his image as follow:
Initially:
Object distance (u) = 4m
Image distance (v) = 4m
The boy moved 2m away, therefore:
Object distance (u) = 2 + 4 = 6m
Image distanc(v) = 2 + 4 = 6m
The distance between the boy and his image will be the sum of his distance (u) and image distance (v) i.e (u + v)
The distance between the boy and his image = 6 + 6 = 12m
Therefore, the distance between the boy and his image is 12m.
From my experience, I would say it is true.
By calculating the crests, you can find the waves' frequency.
Hope this helps!
The pressure drop in pascal is 3.824*10^4 Pascals.
To find the answer, we need to know about the Poiseuille's formula.
<h3>How to find the pressure drop in pascal?</h3>
- We have the Poiseuille's formula,

- where, Q is the rate of flow, P is the pressure drop, r is the radius of the pipe, is the coefficient of viscosity (0.95Pas-s for Glycerin) and l being the length of the tube.
- By substituting values and rearranging we will get the pressure drop as,

Thus, we can conclude that, the pressure drop in pascal is 3.824*10^4.
Learn more about the Poiseuille's formula here:
brainly.com/question/13180459
#SPJ4
Answer:
Amplitude = 0.02m
Frequency = 640 Hz
Wavelength, λ = 0.5m
v = 320 m/s
Explanation:
Given the wave equation :
y=0.02 sin2π/0.5 (320t - x) where x and y are in
meters and t is in second
Comparing the above relation with the general wave equation :
y(x, t) = Asin2π/λ(wt - kx)
The amplitude, A = 0.02
From the equation :
2π/0.5 = 2π/λ
λ = 0.5 m
320t = vt
Hence, v = 320 m/s
Recall :
v = fλ
320 = f * 0.5
f = 320 / 0.5
f = 640 Hz