Answer:
The average velocity is 7.5 km/h
Explanation:
Let's convert minutes to hours so our answer can be given in a common units of km/hour:
12 minutes = 12/60 hours = 0.2 hours
Now we estimate the average velocity calculating the distance travelled over the time it took:
1.5 / 0.2 km/h = 7.5 km/h
Answer:
v = 7934.2 m/s
Explanation:
Here the total energy of the Asteroid and the Earth system will remains conserved
So we will have

now we know that





now from above formula

now we have

now plug in all data


Answer A is incorrect
A crest is just one point. It is not the distance between 2 crests.
B is incorrect
A trough is just 1 point. It is not the distance between 2 troughs.
C is incorrect.
the amplitude measures the height of a crest from the middle of the wave to the crest (or trough).
D is the correct answer. That is the distance between 2 crests or 2 troughs
Answer:
a = F / m
Explanation:
force same -> mass variable
more mass -> less force
Answer:

Explanation:
Velocity can be found using the following formula:

where p is the momentum and m is the mass.
The woman has a mass of 55 kilograms and a momentum of 200 kilogram meters per second.

Substitute the values into the formula.

Divide. Note that the kilograms, or kg, will cancel each other out.


The woman's velocity is 3.63636364 meters per second.