Substract two consecutive terms of the sequence to see if there is a common difference:
As we can see, there is a common difference of -6.
Then, if a number of the sequence is given, the next one can be found by adding -6 (which is the same as subtracting 6).
Notice that the first term of the sequence is 3.
Then, the rule for the sequence is to start with 3 and add -6 repeatedly.
Therefore, the correct choice is option A) Start with 3 and add -6 repeatedly.
Input heat, Qin = 4 x 10⁵ J
Output heat, Qout = 3.5 x 10⁵ J
From the first Law of thermodynamics, obtain useful work performed as
W = Qin - Qout
= 0.5 x 10⁵ J
By definition, the efficiency is
η = W/Qin
= 100*(0.5 x 10⁵/4 x 10⁵)
= 12.5%
Answer: The efficiency is 12.5%
Answer:
= 2.33
Explanation:
.According to snell's law:
n1sin i = n2sin r ,
where n1 is refractive index of the medium in which incident ray is travelling, n2 is the refractive index of the medium in which refracted ray is travelling,
i is angle of incidence,
r is angle of refraction.
Given that,
n1 = 1,
i = 51 degrees,
r = 19.5 degrees. ,
n2= ?
So,
1*sin 51 = n2 sin 19.5
=> n2 = sin51 / sin19.5
= 2.33
<h2>
Answer: It is highly flammable.</h2>
Explanation:
Liquid oxygen is created from oxygen atoms that have been forced to assume the liquid state due to <u>compression (change of pressure) and temperature modification.
</u>
Specifically this is achieved by cooling the oxygen enough to change it to its liquid state. So,<u> as the temperature drops, the atoms move more slowly because they have less energy.
</u>
In this sense, in the liquid state it is easier to store and mobilize oxygen, taking into account that it is a highly flammable gas.
C, velocity I believe this is the answer to your question