(x^2+4)^2 + 32 = 12x^2 + 48 .... a = x^2 + 4
<span>(x^2 + 4)^2 + 32 = 12(x^2 + 4) </span>
<span>a^2 + 32 = 12a </span>
<span>a^2 - 12a + 32 = 0 </span>
<span>(a - 8)(a - 4) = 0 </span>
<span>a = 8 and a = 4 </span>
<span>for a = 8 ... 8 = x^2 + 4 ... x^2 = 4 ... x = +/- 2 </span>
<span>for a = 4 ... 4 = x^2 + 4 ... x^2 = 0 ... x = 0 </span>
<span>x = -2, 0, +2 so your answer is going to be e
</span>
Answer:
t < 1/2
Step-by-step explanation:
Isolate the <u>v</u><u>a</u><u>r</u><u>i</u><u>a</u><u>b</u><u>l</u><u>e</u> by dividing each side by <u>f</u><u>a</u><u>c</u><u>t</u><u>o</u><u>r</u><u>s</u> that don't contain the <u>v</u><u>a</u><u>r</u><u>i</u><u>a</u><u>b</u><u>l</u><u>e</u>.
Inequality Form: t < 1/2
Interval Notation: ( -infinity, 1/2)
<span>175 calories in 12 ounces

</span>