Nitrogen oxides play a critical role in photochemical smog. They give the smog its yellowish-brown hue. Indoor residential appliances like gas stoves and gas or wood heaters can be significant emitters of nitrogen oxides in poorly ventilated environments.
- Nitrogen dioxide (NO₂), ozone (O₃), peroxyacetyl nitrate (PAN), and chemical compounds with the -CHO group are the main harmful elements of photochemical smog (aldehydes). If present in high enough amounts, PAN and aldehydes can harm plants and irritate the eyes.
- The greatest sources of emissions are power plants, heavy construction equipment driven by diesel, other moveable engines, and industrial boilers. Cars, trucks, and buses are next in line.
Therefore , on conclusion i.e. two gases with molecules consisting of nitrogen and oxygen atoms are nitric oxide (NO) and nitrogen dioxide (NO₂). These nitrogen oxides play a part in the development of smog and acid rain, adding to the issue of air pollution.
To know more about photochemical smog
brainly.com/question/15635778
#SPJ1
Answer:
If child weight is equal to rope force then child will move with uniform speed
or we can say that the child will remain at rest in his position
Explanation:
As we know that child is hanging by rope
so here there will be two forces on the child
1) Weight or gravitational force which act vertically downwards
2) Tension in the rope which act vertically upwards
Now if child will accelerate upwards then tension force must be more than the weight of the child
If tension force is less than the weight then child will decelerate and his speed will decrease
if tension force is equal to child weight then in that case the child will remain at rest or it will move with same speed
Answer:
They both tend to develop during the spring (March-June), reach peak intensity during the late autumn or winter (November-February), and then weaken during the spring or early summer (March-June)
To solve this problem it is necessary to apply the concepts related to the law of Malus which describe the intensity of light passing through a polarizer. Mathematically this law can be described as:

Where,
Indicates the intensity of the light before passing through the polarizer
I = Resulting intensity
= Indicates the angle between the axis of the analyzer and the polarization axis of the incident light
From the law of Malus when the light passes at a vertical angle through the first polarizer its intensity is reduced by half therefore

In the case of the second polarizer the angle is directly 60 degrees therefore



In the case of the third polarizer, the angle is reflected on the perpendicular, therefore, its angle of index would be

Then,



Then the intensity at the end of the polarized lenses will be equivalent to 0.09375 of the initial intensity.
According to the information provided to define an average density, it is necessary to use the concepts related to mass calculation based on gravitational constants and radius, as well as the calculation of the volume of a sphere.
By definition we know that the mass of a body in this case of the earth is given as a function of

Where,
g= gravitational acceleration
G = Universal gravitational constant
r = radius (earth at this case)
All of this values we have,

Replacing at this equation we have that

The Volume of a Sphere is equal to

Therefore using the relation between mass, volume and density we have that
