Answer:
The value is 
Explanation:
From the question we are told that
The length of the wire is 
The current density is 
The conductivity is
Generally conductivity is mathematically represented as

Here R is the resistance which is mathematically represented as

Here I is the current which is mathematically represented as

So

And

=> 
=> 
=> 
=> 
Answer:
442.36038 m or 1451.31362 ft
Explanation:
= Initial pressure = 30.15 inHg
= Final pressure = 28.607 inHg
= Density of air = 0.075 lb/ft³



Density of mercury = 13560 kg/m³
g = Acceleration due to gravity = 9.81 m/s²
Difference in pressure is given by

The height of the building is 442.36038 m or 1451.31362 ft
The addition of vectors involve both magnitude and direction. In this case, we make use of a triangle to visualize the problem. The length of two sides were given while the measure of the angle between the two sides can be derived. We then assign variables for each of the given quantities.
Let:
b = length of one side = 8 m
c = length of one side = 6 m
A = angle between b and c = 90°-25° = 75°
We then use the cosine law to find the length of the unknown side. The cosine law results to the formula: a^2 = b^2 + c^2 -2*b*c*cos(A). Substituting the values, we then have: a = sqrt[(8)^2 + (6)^2 -2(8)(6)cos(75°)]. Finally, we have a = 8.6691 m.
Next, we make use of the sine law to get the angle, B, which is opposite to the side B. The sine law results to the formula: sin(A)/a = sin(B)/b and consequently, sin(75)/8.6691 = sin(B)/8. We then get B = 63.0464°. However, the direction of the resultant vector is given by the angle Θ which is Θ = 90° - 63.0464° = 26.9536°.
In summary, the resultant vector has a magnitude of 8.6691 m and it makes an angle equal to 26.9536° with the x-axis.
When you heat something of cool it down you don't change the substance you might change the why is looks, but it is still the same substance. For example you cool water to 0 degrees Celsius it turns into ice but it still is two parts hydrogen and one part oxygen H2O. Physical changes will change state and/or form but it will still be what it originally was on the molecular level. Hope that helped.