I found the attached image with the same statement of your question and think it may be very useful for you that I use it to show how to answer this question (furthermore I think it may be the same reaction that you forgot to include).
As you can see, there are one image on the left side and other image on hte right side of the figure.
Those images contains drawings that represent molecules and a legend that permit you to distinguish the kind of atoms in each molecule.
Using that, you can indicate the chemical reaction as the transformation of the molecules on the left side onto the molecules on the right side:
Left side:
3 molecules of CH4 and 3 molecules of N2Cl4
Right side:
3 molecules of CCl4, 3 molecules of N2 and 6 molecules of H2
That is represented as:
3CH4 + 3 N2Cl4 -----> 3 CCl4 + 3N2 + 6H2And that is the balanced chemical equation for the reaction shown in the figured attached.I hope this is useful for you..
Answer:
Yea pretty much it's 3.49
Explanation:
As in relative abundance , one is take reference
So,
One is taken as 1:
Other is subtracted from it:
(1 - 0.6011)(atomic mass of Ga-71)
Equation can be written as:
<span>69.723 = (0.6011)(68.9256) + (1-0.6011)x </span>
<span>(1-0.6011) is the percentage abundance of Ga-71 expressed in percentage: </span>
<span>Solving for x </span>
<span>28.2918 = 0.3989 x </span>
<span>x= 70.9246.......</span>
The answer is D or 4,3,2!
For this problem, we use the formula for radioactive decay which is expressed as follows:
An = Aoe^-kt
where An is the amount left after time t, Ao is the initial amount and k is a constant.
We calculate as follows:
An = Aoe^-kt
0.5 = e^-k(5730)
k = 1.21x10^-4
An = Aoe^-kt
An = 200e^-1.21x10^-4(17190)
An = 25
Therefore, about 175g is produced.