1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
musickatia [10]
3 years ago
14

If a mass of 76 kg acts downward 0.38 m from the axis of rotation on one end of a board and another force of 129 N also acts dow

nward, what is the moment arm of the second force to balance this system
Physics
1 answer:
Semenov [28]3 years ago
6 0

Answer:

y = 2.196 m

Explanation:

Mass, m = 76 kg

distance from axis of rotation, x = 0.38 m

Second Force, F = 129 N

moment arm of the second force, y = ?

Now, equating moments for the equilibrium

So,

m g × x = F x y

76 x 0.38 x 9.81 = 129 x y

y = \dfrac{76\times 0.38\times 9.81}{129}

y = 2.196 m

Hence, the length of the moment arm is equal to 2.196 m.

You might be interested in
Half life of a given sample of radium is 22 years the sample will reduce to 25% of its original value after
makkiz [27]

Answer:

44 years

Explanation:

Use half life equation:

A = A₀ (½)^(t / T)

where A is the final amount,

A₀ is the initial amount,

t is time,

and T is the half life.

0.25 A₀ = A₀ (½)^(t / 22)

0.25 = (½)^(t / 22)

t / 22 = 2

t = 44

3 0
3 years ago
A reciprocating compressor is a device that compresses air by a back-and-forth straight-line motion, like a piston in a cylinder
Stella [2.4K]

Answer:

The temperature change per compression stroke is 32.48°.

Explanation:

Given that,

Angular frequency = 150 rpm

Stroke = 2.00 mol

Initial temperature = 390 K

Supplied power = -7.9 kW

Rate of heat = -1.1 kW

We need to calculate the time for compressor

Using formula of compression

\terxt{time for compression}=\text{time for half revolution}

\terxt{time for compression}=\dfrac{1}{2}\times T

\terxt{time for compression}=\dfrac{1}{2}\times \dfrac{1}{f}

Put the value into the formula

\terxt{time for compression}=\dfrac{1}{2}\times \dfrac{1}{150}\times60

\terxt{time for compression}=0.2\ sec

We need to calculate the rate of internal energy

Using first law of thermodynamics

U=Q-W

\dfrac{\Delta U}{\Delta t}=\dfrac{\Delta Q}{\Delta t}-\dfrac{\Delta W}{\Delta t}

Put the value into the formula

\dfrac{\Delta U}{\Delta t}=(-1.1)-(7.9)

\dfrac{\Delta U}{\Delta t}=6.8\ kW

We need to calculate the temperature change per compression stroke

Using formula of rate of internal energy

\dfrac{\Delta U}{\Delta t}=\dfrac{nc_{v}\Delta \theta}{\Delta t}

\Delta\theta=\dfrac{\Delta U}{\Delta t}\times\dfrac{\Delta t}{n\times c_{c}}

Put the value into the formula

\Delta \theta=6.8\times10^{3}\dfrac{0.2}{2.0\times20.93}

\Delta\theta=32.48^{\circ}

Hence, The temperature change per compression stroke is 32.48°.

6 0
3 years ago
What should you do after handling chemicals in the lab
Natalija [7]

Answer:

Wash your hands with warm water and soap.

6 0
3 years ago
Which way does wind blow
prisoha [69]
I think it blows vertically and horizontally cause wind can blow different directions
5 0
3 years ago
Read 2 more answers
I need help with this question how to solve it for Brass and Cooper
Ksenya-84 [330]

Take into account that density and relative density are given by:

\begin{gathered} \text{density}=\text{ mass/volume} \\ \text{relative density = density/density of water} \end{gathered}

Take into account that the volume associated to each of the given sustances in the table is determined by the Level Difference (because it is the change in the volume of the water of the recipient in which the substance is immersed).

The density of water in kg/m^3 is 1000 kg/m^3.

Due to the density must be given in kg/m^3, it is necessary to express the volumes of the table in m^3 and mass in kg, then, consider the following conversion factor:

1 m^3 = 1000000 ml

1 kg = 1000 g

Then, you obtain the following results:

Brass:

\begin{gathered} 53.2g\cdot\frac{1kg}{1000g}=0.0532kg \\ 6ml\cdot\frac{1m^3}{1000000ml}=0.000006m^3 \\ \text{density}=\frac{0.0532kg}{0.000006m^3}\approx8866.67\frac{kg}{m^3} \\ \text{relative density=}\frac{(\frac{8866.66kg}{m^3})}{(1000\frac{kg}{m^3})}\approx8.87 \end{gathered}

Cooper:

\begin{gathered} 57.4g=0.0574kg \\ 6ml=0.000006m^3 \\ \text{density}=\frac{0.0574kg}{0.000006m^3}\approx9566.67\frac{kg}{m^3} \\ \text{relative density=}\frac{\frac{9566.67kg}{m^3}}{1000kg}=9.57 \end{gathered}

3 0
1 year ago
Other questions:
  • A helicopter (m = 3250 kg) is cruising at a speed of 56.9 m/s atan altitude of 185 m. What is the total mechanical energy of the
    10·1 answer
  • 8. A student does 1,000 J of work when she moves to her dormitory. Her internal energy is decreased by 3,000 J. Determine the he
    12·1 answer
  • he Volume in an experiment is changed (in mL) is 200, 100, 50, 25, 12.5 and we measured the pressure (in atm) is 0.1000, 0.2000,
    15·1 answer
  • What does the electron cloud model describe
    13·1 answer
  • Ocean waves are traveling to the east at 3.2 m/s with a distance of 19 m between crests. (a) With what frequency do the waves hi
    11·1 answer
  • How much weight is generated by an 80 kg person on planet earth? On the moon?
    5·1 answer
  • A rock falls off a cliff with an acceleration of -9.8 m/s^2 and hits the ground 5 s later . How high is the diff?​
    5·1 answer
  • What colors of light are absorbed when white light falls on a green object?
    11·2 answers
  • A ball is still live when
    11·1 answer
  • This table shows data collected by three devices: a thermometer on a weather balloon, a surface thermometer, and a barometer.
    5·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!