Answer:

Explanation:
<u>Conservation of Momentum
</u>
The total momentum of a system of two particles is

Where m1,m2,v1, and v2 are the respective masses and velocities of the particles at a given time. Then, the two particles collide and change their velocities to v1' and v2'. The final momentum is now

The momentum is conserved if no external forces are acting on the system, thus

Let's put some numbers in the problem and say



120=120
It means that when the particles collide, the first mass returns at 6 m/s and the second continues in the same direction at 28 m/s
<span>Two of them are "redshift" and "blueshift", which are used to describe an object'smotion toward or away from us in space. Redshift indicates that an object is moving away from us. "Blueshift" is a term that astronomers use to describe an object that is moving toward another object or toward us.</span>
Answer:
= 3,126 m / s
Explanation:
In a crash exercise the moment is conserved, for this a system formed by all the bodies before and after the crash is defined, so that the forces involved have been internalized.
the car has a mass of m = 1.50 kg a speed of v1 = 4.758 m / s and the mass of the train is M = 3.60 kg and its speed v2 = 2.45 m / s
Before the crash
p₀ = m v₁₀ + M v₂₀
After the inelastic shock
= m
+ M
p₀ = 
m v₀ + M v₂₀ = m
+ M
We cleared the end of the train
M
= m (v₁₀ - v1f) + M v₂₀
Let's calculate
3.60 v2f = 1.50 (2.15-4.75) + 3.60 2.45
= (-3.9 + 8.82) /3.60
= 1.36 m / s
As we can see, this speed is lower than the speed of the car, so the two bodies are joined
set speed must be
m v₁₀ + M v₂₀ = (m + M)
= (m v₁₀ + M v₂₀) / (m + M)
= (1.50 4.75 + 3.60 2.45) /(1.50 + 3.60)
= 3,126 m / s