Answer:
–500KJ
Explanation:
Data obtained from the question include the following:
Heat of reactant (Hr) = 800KJ
Heat of product (Hp) = 300KJ
Enthalphy change (ΔH) =..?
The enthalphy change is simply defined as the difference between the heat of product and the heat of reactant i.e
Enthalphy change = Heat of product – Heat of reactant
ΔH = Hp – Hr
With the above formula, we can easily calculate the enthalphy change as follow
ΔH = Hp – Hr
ΔH = 300 – 800
ΔH = –500KJ.
Therefore, the overall energy change for the reaction between hydrogen and oxygen shown in the diagram above is –500KJ
Answer:
The true statement is: Spontaneous reactions tend to lead to higher entropy.
Explanation:
The spontaneity of a reaction is linked to the value of Gibbs free energy (ΔG°). The more negative is this value, the more spontaneous is a reaction. At the same time, Gibbs free energy depends on enthalpy (ΔH°) and entropy (ΔS°), according to the following expression:
ΔG° = ΔH° - T.ΔS°
We can see that higher entropies (higher ΔS°) lead to more negative ΔG°, thus, more spontaneous reactions.
Answer:
pH ( potential Hydrogen ) is a negative logarithm of molar concentration of hydrogen ions.
![pH = - log[H {}^{ + } ]](https://tex.z-dn.net/?f=pH%20%3D%20%20-%20%20log%5BH%20%7B%7D%5E%7B%20%2B%20%7D%20%5D)
therefore:

Answer:1 2and 3
Explanation:
Saccharide consist of simple sugars of triose