We can solve this problem using the law of conservation of energy.
This law states that energy in a closed system must stay same.
That means that the energy of a ball leaving the hand and the energy of a ball when it reaches its maximum height must be the same.
The energy of a ball leaving the players hand is kinetic energy:

The energy when the ball reaches its maximum height ( and has zero velocity) is potential energy in a gravitational field:

As said before these energies must be the same, and that allows us to find the initial speed:

When we plug in all the number we get that
Answer:
Explanation:
The difference between the water level in the eudiometer tube and the water level in the beaker must be measured because we have to put into consideration, the pressure of the gases in the eudiometer tube. This said pressure of gas in the eudiometer must equal the atmospheric pressure. If or by chance, the water levels happens not to be at the same height, then this is not the case. And then, as a result, in order to account for the difference between both, while also being able to get accurate results, you have to find the difference or subtract the water levels and then go ahead in converting them to mmHg.
Answer:
Carl Rogers was an influential humanistic psychologist who developed a personality theory that emphasized the importance of the self-actualizing tendency in shaping human personalities. ... Human beings develop an ideal self and a real self based on the conditional status of positive regard
Explanation:
Answer:
Part a)
a = -9.81 m/s/s
Part b)
v = 0
Part c)
v = 9.81 m/s
Part d)

Explanation:
Part a)
During the motion of ball it will have only gravitational force on the ball
so here the acceleration of the ball is only due to gravity
so it is given as

Part b)
As we know that ball is moving against the gravity
so here the velocity of ball will keep on decreasing as the ball moves upwards
so at the highest point of the motion of the ball the speed of ball reduce to zero

Part c)
We know that the total time taken by the ball to come back to the initial position is T = 2 s
so in this time displacement of the ball will be zero



Part d)
at the maximum height position we know that the final speed will be zero
so we will have

here we have


Answer:
Explained
Explanation:
1.Each of the spring scale will read 10N,considering acceleration due to gravity as 10 m/s^2
2.Each of the spring scale will read 10N because each string exerts a force of 10 N to counterbalance the force of 1 kg mass attached to it. This means the tension on the both side of the string is 10 N. So the scale will read 10 N. Also as spring balances are attached in series and kept on table so both spring balances will read same readings.