To stop instantly, you would need infinite deceleration. This in turn, requires infinite force, as demonstrable with this equation:F=ma<span>So when you hit a wall, you do not instantly stop (e.g. the trunk of the car will still move because the car is getting crushed). In a case of a change in momentum, </span><span><span>m<span>v⃗ </span></span><span>m<span>v→</span></span></span>, we can use the following equation to calculate force:F=p/h<span>However, because the force is nowhere close to infinity, time will never tend to zero either, which means that you cannot come to an instantaneous stop.</span>
Answer:
Half
Explanation:
You only have to exert a force equal to half the weight of the load to lift it.
Answer:
33.33j+6.67i km/hr
Explanation:
From the law of conservation of momentum,
Applying,
mu+m'u' = V(m+m')............... Equation 1
Where m = mass of the truck, m' = mass of the car, u = initial velocity of the truck, u' = initial velocity of the car, V = Final velocity.
Note: let j represent the north, and i represent the east
From the question,
Given: m = 1500 kg, u = 60j, m' = 1200 kg, u' = 15i
Substitute these values into equation 1
1500*60j+1200*15i = V(1500+1200)
90000j+18000i = 2700V
V = (90000j+18000i)/2700
V = 33.33j+6.67i km/hr
Answer:
19.2 m/s
Explanation:
The train is moving at 18 m/s and you are walking in the same direction (east) so the speeds are added
18 + 1.2 = 19.2
If you were walking backwards (west) your velocity with respect to the ground would be
18 - 1.2 = 16.8