Answer:
a) 1.3 rad/s
b) 0.722 s
Explanation:
Given
Initial velocity, ω = 0 rad/s
Angular acceleration of the wheel, α = 1.8 rad/s²
using equations of angular motion, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
where
θ2 - θ1 = 53.2 rad
t2 - t1 = 7s
substituting these in the equation, we have
θ2 - θ1 = ω(0)[t2 - t1] + 1/2α(t2 - t1)²
53.2 =ω(0) * 7 + 1/2 * 1.8 * 7²
53.2 = 7.ω(0) + 1/2 * 1.8 * 49
53.2 = 7.ω(0) + 44.1
7.ω(0) = 53.2 - 44.1
ω(0) = 9.1 / 7
ω(0) = 1.3 rad/s
Using another of the equations of angular motion, we have
ω(0) = ω(i) + α*t1
1.3 = 0 + 1.8 * t1
1.3 = 1.8 * t1
t1 = 1.3/1.8
t1 = 0.722 s
Answer:
the range or the ball is 48.81 m
Explanation:
given;
Nicole throws a ball at 25 m/s at an angle of 60 degrees abound the horizontal.
find:
What is the range of the ball?
solution:
let Ф = 25°
Vo = 25 m/s
<u>consider x-motion using time of fight: x = Vox * t</u>
where x = R = range
t =<u> 2 Voy </u>
g
R =<u> Vo² sin (2Ф)</u>
g
plugin values into the formula:
R = <u>(25)² sin (2*25) </u>
9.81
R = 48.81 m
therefore, the range or the ball is 48.81 m
Acceleration can be defined as the rate of change in the velocity of an object. Option C is correct.
<h3>What is
Acceleration?</h3>
- It is defined as the rate of change in velocity.
- It can also be defined as the rate of change in position in a particular direction.

Where,
- acceleration
- change in velocity
- time
Therefore, acceleration can be defined as the rate of change in the velocity of an object.
Learn more about Velocity:
brainly.com/question/2239252
Answer:
v = 2,425 m / s
Explanation:
A simple pendulum has anergy stored at the highest point of the path and this energy is conserved throughout the movement.
highest point
Em₀ = U = m g y
lowest point
= K = ½ m v²
Em₀ = Em_{f}
mg y = ½ m v²
v = √ 2gy
let's calculate
v = √ (2 9.8 0.3)
v = 2,425 m / s
Answer:
B = 0.129 T
Explanation:
Given,
frequency, f = 60 Hz
maximum emf = 5200 V
Number of turns, N = 130
Area per turn = 0.82 m²
We know,
ω = 2 π f
ω = 2 π x 60 = 376.99 rad/s
now, Magnetic field calculation


B = 0.129 T
Hence, the magnetic field is equal to B = 0.129 T