Length of the sheet is given as

width of the sheet is given as

now let say its thickness is "t"
so the volume of the sheet is given as



mass of the sheet is given as

now we have


by solving above we have

so the thickness of sheet will be above
Answer:
12.0 meters
Explanation:
Given:
v₀ = 0 m/s
a₁ = 0.281 m/s²
t₁ = 5.44 s
a₂ = 1.43 m/s²
t₂ = 2.42 s
Find: x
First, find the velocity reached at the end of the first acceleration.
v = at + v₀
v = (0.281 m/s²) (5.44 s) + 0 m/s
v = 1.53 m/s
Next, find the position reached at the end of the first acceleration.
x = x₀ + v₀ t + ½ at²
x = 0 m + (0 m/s) (5.44 s) + ½ (0.281 m/s²) (5.44 s)²
x = 4.16 m
Finally, find the position reached at the end of the second acceleration.
x = x₀ + v₀ t + ½ at²
x = 4.16 m + (1.53 m/s) (2.42 s) + ½ (1.43 m/s²) (2.42 s)²
x = 12.0 m
Explanation:
mass of earth (m1)=5.97×10^24
mass of moon (m2)=7.35×10^22
distance between their center (d)= 3.84×10^8
G=6.67×10^-11
now,
gravitational force =(F)= G(m1×m2)/d²
- 6.67×10^-11(5.97×10^24×7.35×10^22)/(3.84×10^8)
- 19.84×10^19
<h3>stay safe healthy and happy...</h3>
Answer:
<h2>The coefficient of static friction will be
0.7</h2>
Explanation:
Given data
the radius of curve= 90m
speed v= 90 km/h to m/s = (90*100)/60*60= 25 m/s
we know that the expression for the centripetal force acting on the car
-------1
we also know that the expression for the frictional force between road and tire.
Ff= μmg--------2
Equating equation 1 and 2 we have
μmg= mv^2/r
μ= v^2/gr
substituting the values of speed and radius we have (assuming g= 9.81m/s^2)
μ= 25^2/9.81*90
μ= 625/882.9
μ= 0.7
Answer: I don't know sorry.
Explanation: