Answer:

Explanation:
Given that,
The mass of a toy, m = 0.62 kg
Force with which a child pull the toy = 16.3 N
The force with which the toy pulled in the opposite direction = -15.8 N
We need to find the acceleration of the toy. Let F be the net force acting on the toy. It is equal to :
F = 16.3 N - (-15.8 N)
= 32.1 N
Let a be the acceleration of the toy. Using Newton' second law of motion to find it.
F = ma

So, the acceleration of the toy is
.
Answer:
S=2.693m
Explanation:
Let point
be the origin of the room and the fly is crawling at point
as shown in the attached photo:
#Distance of the fly from the corner of the room is defined as:

#Substitute the coordinate values in the above equation:

Hence, the distance of the fly from the corner of the room is 2.693m
Earth's surface warms up in the sunlight. At night, Earth's surface cools, releasing the heat back into the air. But some of the heat istrapped<span> by the greenhouse </span>gases<span> in the </span>atmosphere<span>. ... Greenhouse </span>effect<span> of Earth's </span>atmosphere<span> keeps some of the Sun's energy from escaping back into space at night.</span>
Answer:
The formula for Impedance for circuit with R, C, and L are:

The impedance Z of the series RLC circuit depend upon angular frequency ω. Impedance is measured in ohms and resistance (R), inductance reactance and capacitive reactance. Series RLC circuit consist of the resistance, a capacitance and an inductance connected in the circuits. Electrical impedance is the measurement of the opposition that a circuit present in a current.
Answer:
It is found that W1 - W2 loss in weight of solid when immersed in water is equal to the weight of the water displaced by the body. This verifies Archimedes' principle.