The energy absorbed by photon is 1.24 eV.
This is the perfect answer.
Answer:
the velocity is 10 m/s
Explanation:
Using the expression for kinetic energy we have:
![Ek=\frac{1}{2} *m*v^{2} \\\\Ek=100J\\m=2kg\\v=\sqrt{(2*100/2)}\\ v=10[m/s]](https://tex.z-dn.net/?f=Ek%3D%5Cfrac%7B1%7D%7B2%7D%20%2Am%2Av%5E%7B2%7D%20%5C%5C%5C%5CEk%3D100J%5C%5Cm%3D2kg%5C%5Cv%3D%5Csqrt%7B%282%2A100%2F2%29%7D%5C%5C%20v%3D10%5Bm%2Fs%5D)
Answer:
see below
Explanation:
a. 0.1886 x 12
=2.2632
This has 2 sig figures so the answer can only have 2 sig figures
2.3
b. 2.995 - 0.16685
=2.82815
The most accurate in the problem is to thousands place so our answer can only be accurate to the thousands place
2.828
c. 910 x 0.18945=172.3995
The least number of significant figures is 3 so the answer can only have 3 significant figures
172
Answer:
The correct answers are
(a) It decreases to 1/3 L
(ii) is (c) It is constant
Explanation:
to solve this, we list out the number of knowns and unknowns so as to determine the correct equation to solve the problem
The given variables are as follows
Initial volume V1 = 1L
V2 = Unknown
Initial Temperature T1 = 300K
let us assume that the balloon is perfectly elastic
At 300K the balloon is filled and it stretches to maintain 1 atmosphere
at 100K the content of the balloon cools reducing the excitement of the gas content which also reduces the pressure, however, the balloon being perfectly elastic, contracts to maintain the 1 atmospheric pressure, hence the answer to (ii) is (c) It is constant,
For (i) since we know that the pressure of the balloon is constant
by Charles Law V1/T1 =V2/T2
or V2 = (V1/T1)×T2 =
×
=
× L = L/3 hence the correct answer to (i) is 1/3L
Answer:
Uhhhhh? can u explains? lol