Answer:
(a) 135 kV
(b) The charge chould be moved to infinity
Explanation:
(a)
The potential at a distance of <em>r</em> from a point charge, <em>Q</em>, is given by

where 
Difference in potential between the points is
![kQ\left[-\dfrac{1}{0.2\text{ m}} -\left( -\dfrac{1}{0.1\text{ m}}\right)\right] = \dfrac{kQ}{0.2\text{ m}} = \dfrac{9\times10^9\text{ F/m}\times3\times10^{-6}\text{ C}}{0.2\text{ m}}](https://tex.z-dn.net/?f=kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7B0.2%5Ctext%7B%20m%7D%7D%20-%5Cleft%28%20-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D%20%3D%20%5Cdfrac%7BkQ%7D%7B0.2%5Ctext%7B%20m%7D%7D%20%3D%20%5Cdfrac%7B9%5Ctimes10%5E9%5Ctext%7B%20F%2Fm%7D%5Ctimes3%5Ctimes10%5E%7B-6%7D%5Ctext%7B%20C%7D%7D%7B0.2%5Ctext%7B%20m%7D%7D)

(b)
If this potential difference is increased by a factor of 2, then the new pd = 135 kV × 2 = 270 kV. Let the distance of the new location be <em>x</em>.
![270\times10^3 = kQ\left[-\dfrac{1}{x}-\left(-\dfrac{1}{0.1\text{ m}}\right)\right]](https://tex.z-dn.net/?f=270%5Ctimes10%5E3%20%3D%20kQ%5Cleft%5B-%5Cdfrac%7B1%7D%7Bx%7D-%5Cleft%28-%5Cdfrac%7B1%7D%7B0.1%5Ctext%7B%20m%7D%7D%5Cright%29%5Cright%5D)



The charge chould be moved to infinity
Answer:
makinig ka kasi sa titser mo tas intindihin mo bobo
1. 12.75 J
Assuming that the force applied is parallel to the ramp, so it is parallel to the displacement of the cart, the work done by the force is

where
F = 15 N is the magnitude of the force
d = 85 cm = 0.85 m is the displacement of the cart
Substituting in the formula, we get

2. 10.6 N
In this part, the cart reaches the same vertical height as in part A. This means that the same work has been done (because the work done is equal to the gain in gravitational potential energy of the object: but if the vertical height reached is the same, then the gain in gravitational potential energy is the same, so the work done must be the same).
Therefore, the work done is

However, in this case the displacement is
d = 120 cm = 1.20 m
Therefore, the magnitude of the force in this case is

The density of the two pieces of rock is determined from the ratio of their masses to the pore volume of the rock.
<h3>What is density?</h3>
The density of an object is the ratio of mass to volume of the object.
Density = mass/volume
Assuming a constant pore volume of the rock = V
Density for 26.3 g = 26.3/V
Density for 58.3 g = 58.3g/V
Thus, the density of the two pieces of rock is determined from the ratio of their masses to the pore volume of the rock.
Learn more about density here: brainly.com/question/6838128
#SPJ1