Answer:
The correct answer is Option A.
Answer:
532 millimeters of mercury
Explanation:
In order to convert the pressure from atm to millimeters of mercury (mm Hg), we should remind the conversion factor between the two units:
1 atm = 760 mm Hg
Therefore, we can solve the problem by setting up the following proportion:

Solving for x, we find

No, and no. In fact, the consequences are exactly opposite to your description.
When you drop soap on the ground, the soap ... which had been clean ... gets dirty, and the ground ... which had been dirty ... gets clean.
Answer:
The frequency of the standing wave in the second case is higher than that in the first case
Explanation:
The frequency and wavelength of a wave are related.
The moment you sliced the bottle, you've reduced the wavelength of the bottle.
When wavelength decreases, frequency increases and vice versa.
So, When frequency
increases in the second case, more wave crests pass a fixed point each second. That means
the wavelength shortens. So, as frequency increases, wavelength
decreases. The opposite is also true—as frequency decreases,
wavelength increases.
Correct me if I’m wrong, but I believe it’s A and D, though I’m not fully sure.