1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Dima020 [189]
3 years ago
11

For the hypothetical reaction A → B, calculate the average rate of disappearance of A if the initial concentration of A is 0.91

M and the concentration of A after 90 minutes is 0.11 M.
Physics
1 answer:
marishachu [46]3 years ago
7 0

Answer:

The right answer is 8.9 x 10^-3 M/min

Explanation:

           A → B

-d [A]/dt  = K [A]

ΔA/Δt     = - (C2 -C1)/t2 - t1

               = - (0.11 - 0.91)/90

               = 8.9 x 10^-3 M/min

You might be interested in
What is the Net Force?
marshall27 [118]

It is 800 N FN = 600N + 200 N = 800 N Answer to your question: The net force is all Newton's second law. It is the force that acts on a body or a particle. for example: It is the force we make when we push a car or something heavy that is in a straight line. .

3 0
3 years ago
What was the name of the voyages taken by Zheng he during the Ming dynasty on behalf of China
telo118 [61]

Answer:

Ming treasure voyages

Explanation:

6 0
3 years ago
Suppose a light source is emitting red light at a wavelength of 700 nm and another light source is emitting ultraviolet light at
klasskru [66]

Answer:

b) twice the energy of each photon of the red light.

Explanation:

\lambda = Wavelength

h = Planck's constant = 6.626\times 10^{-34}\ m^2kg/s

c = Speed of light = 3\times 10^8\ m/s

Energy of a photon is given by

E=h\nu\\\Rightarrow E=h\dfrac{c}{\lambda}

Let \lambda_1 = 700 nm

\lambda_2=350\\\Rightarrow \lambda_2=\dfrac{\lambda_1}{2}

For red light

E_1=\dfrac{hc}{\lambda_1}

For UV light

E_2=\dfrac{hc}{\dfrac{\lambda_1}{2}}

Dividing the equations

\dfrac{E_1}{E_2}=\dfrac{\dfrac{hc}{\lambda_1}}{\dfrac{hc}{\dfrac{\lambda_1}{2}}}\\\Rightarrow \dfrac{E_1}{E_2}=\dfrac{1}{2}\\\Rightarrow E_2=2E_1

Hence, the answer is  b) twice the energy of each photon of the red light.

7 0
3 years ago
Read 2 more answers
Find the uniform acceleration that causes a car's velocity to change from 20.0 m/s to 105 m/s in and 12.0 s
Sauron [17]

Answer:

7.08 m/s²

Explanation:

Given:

v₀ = 20.0 m/s

v = 105 m/s

t = 12.0 s

Find: a

v = at + v₀

105 m/s = a (12.0 s) + 20.0 m/s

a = 7.08 m/s²

5 0
3 years ago
6 A test of a driver's perception/reaction time is being conducted on a special testing track with level, wet pavement and a dri
mylen [45]

Answer:

a. 10.5 s b. 6.6 s

Explanation:

a. The driver's perception/reaction time before drinking.

To find the driver's perception time before drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (0 m/s)² - (22.35 m/s)²/2(117.35 m)

a =  - 499.52 m²/s²/234.7 m

a = -2.13 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 0 m/s (since he stops), a = deceleration of driver = -2.13 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (0 m/s - 22.35 m/s)/-2.13 m/s²

t = - 22.35 m/s/-2.13 m/s²

t = 10.5 s

b. The driver's perception/reaction time after drinking.

To find the driver's perception time after drinking, we first find his deceleration from

v² = u² + 2as where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver and s = distance moved by driver = 385 ft = 385 × 0.3048 m = 117.35 m

So, a = v² - u²/2s

substituting the values of the variables into the equation, we have

a = v² - u²/2s

a = (13.41 m/s)² - (22.35 m/s)²/2(117.35 m)

a = 179.83 m²/s² - 499.52 m²/s²/234.7 m

a = -319.69 m²/s² ÷ 234.7 m

a = -1.36 m/s²

Using a = (v - u)/t where u = initial speed of driver = 50 mi/h = 50 × 1609 m/3600 s = 22.35 m/s, v = final speed of driver = 30 mi/h = 30 × 1609 m/3600 s = 13.41 m/s, a = deceleration of driver = -1.36 m/s² and t = reaction time

So, t = (v - u)/a

Substituting the values of the variables into the equation, we have

t = (13.41 m/s - 22.35 m/s)/-1.36 m/s²

t = - 8.94 m/s/-1.36 m/s²

t = 6.6 s

4 0
3 years ago
Other questions:
  • As you found in Part A, your weight will be greater than normal when the elevator is moving upward with increasing speed. For wh
    13·1 answer
  • A 50 g dart rests up against a spring that has been compressed 0.04 meters. It has a spring constant of 1560 N/m.What is the max
    9·1 answer
  • What unit is used to measure the amount of energy that people get from food?
    15·1 answer
  • What is the atmospheric pressure 1.00 km above the surface of Venus? Express your answer in Earth-atmospheres.
    9·1 answer
  • What drives people to explore
    12·1 answer
  • State Newton's law of universal gravitation in words. Then do the same with one equation.
    10·1 answer
  • The critical angle for a substance is measured at 53.7 degrees. Light enters from air at 45.0 degrees. At what angle it will con
    13·1 answer
  • What is air<br><br> A. A Buchner substance<br> B. A compound<br> C. An element<br> D. A mixture
    12·1 answer
  • How can i stop loveing you if yo keep saying the things i want to hear
    7·2 answers
  • Please solve this for 15 points please dont put in a link.
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!