Answer:
- <u>Option b. Atom P has an estimated Zeff of 7 and is therefore to the right of Atom Q, which has a Zeff of 6.</u>
Explanation:
Please, find attached the figures of both atom Q and atom P corresponding to this question.
The <u>features of atom Q are</u>:
- Each <em>black sphere</em> represents an electron
- In total this atom has 8 electrons: 2 in the inner shell and 6 in the outermost shell.
- Since it is assumed that the atom is neutral, it has 8 protons: one positive charge of a proton balances one negative charge of an electron. Thus, the atomic number of this atom is 8.
- Since only two shells are ocuppied, you can assert that the atom belongs to the period 2 (which is confirmed looking into a periodic table with the atomic number 8).
- <em>Zeff </em>is the effective nuclear charge of the atom. It accounts for the net positive charge the valence electrons experience. And may, in a very roughly way, be estimated as the number of protons less the number of electrons in the inner shells. Thus, for this atom, an estimated Z eff = 8 - 2 = 6.
The <u>features of atom P</u> are:
- Again, each black sphere represents an electron
- In total this atom has 9 electrons: 2 in the inner shell and 7 in the outermost shell.
- Since it is assumed that the atom is neutral, it has 9 protons.
- The atomic number of this atom is 9.
- Using the same reasoning used for atom Q, this atom is also in the period 2.
- Estimated Z eff = 9 - 2 = 7.
Then, since atom P has a greater Z eff than atom Q (an estimated Zeff of 7 for atom P against an estimated Z eff of 6 for atom Q), and both atoms are in the same period, you can affirm that <em>atom P</em> has a greater atomic number and<em> is therefore to the right of atom Q</em>.
As we know that 760 mmHg is equal to 1 atm.
So,
If 760 mmHg is equal to = 1 atm
Then
738 mmHg will be equal to = X atm
Solving for X,
X = (738 mmHg × 1 atm) ÷ 760 mmHg
X = 0.971 atm
Result:
738 mmHg is equal to 0.971 atm.
Overharvesting that would be your answer!
Answer:
9.55 grams of SiO2
Explanation:
If the mass you mean by grams:
0.159 mole x 60.08 g (Periodic table by adding both elements)
Cancel moles with moles (Original moles with the 1 mol at the bottom of the grams) and gives you:
9.55 grams of SiO2