The acid dissociation constant is 1.3 × 10^-3.
<h3>What is acid-dissociation constant?</h3>
The acid-dissociation constant is a constant that shows the extent of dissociation of an acid in solution. We have to set up the reaction equation as shown below;
Let the acid be HA;
HA + H2O ⇄ H3O^+ + A^-
since the pH of the solution is 2.57 then;
[H3O^+] = Antilog(-pH) = Antilog(-2.57) = 2.7 × 10^-3
We can see that; [H3O^+] = [A^-] so;
Ka = (2.7 × 10^-3)^2/(5.5 × 10^–3)
Ka = 1.3 × 10^-3
Learn more about acid-dissociation constant: brainly.com/question/9728159
Answer:
Electromagnetism is the study of the electromagnetic force, one of the four fundamental forces of nature. It includes the electric force, which pushes all charged particles, and the magnetic force, which only pushes moving charges.It is used in many electrical appliances to generate desired magnetic fields. It is even used in a electric generator to produce magnetic fields for electromagnetic induction to occur.
Explanation:
tell me if this helped, ill try and explain better
The concentration of the reactants and products remain constant. Because the rates of the forward and reverse reaction are equal there is no net change to the amount of reactants or products produced.May 19, 2011
The question is incomplete, the complete question is shown in the image attached
Answer:
A and B
Explanation:
The electrophilic substitution of arenes yields a cation intermediate. The positive charge of the cation is delocalized over the entire ring.
The -CN group directs incoming electrophiles to the ortho/para position. The resonance structures for the chlorination of benzonitrile are shown in the question.
Recall that -CN is an electron withdrawing group. The resonance forms that destablize the carbocation intermediate are those in which the -CN group is directly attached to the carbon atom bearing the positive charge as in structures A and B.
Answer:
the sun
Explanation:
the sun is not alive and plants use photosynthesis to eat the radiation emitted by the sun.