Lowery-Bronsted theory is applied here. Acc. to this theory Base accepts protons and Acids donate proton.
Part 1:
Aniline is less basic than ethylamine because the lone pair on nitrogen (which accepts proton) is not localized. It resonates throughout the conjugated system of phenyl ring. Hence due to unavailability of electrons for accepting proton it is less basic compare to ethylamine. In ethyl amine the lone pair of electron is localized and available to abstract proton.
Part 2:
In this case the alkyl groups attached to -NH₂ (in ethylamine) and -O⁻ (in ethoxide are same (i.e. CH₃-CH₂-). Ethoxide is more basic than ethylamine because ethoxide is a conjugate base of ethanol (pKa value of ethanol = 15.9 very weak acid) and the conjugate base of weak acid is always a strong base. Secondly, the oxygen atom more Electronegative than Nitrogen atom can attract more electron cloud from alkyl group as compared to Nitrogen in ethylamine. Hence, oxygen in ethoxide attains greater electron cloud than the nitrogen in ethylamine. Therefore, it is more basic than ethylamine.
Answer: Ethyl Ethanoate can be used as a developing solvent. It’s safer.
Explanation:Di ethyl ether should be carefully used because it’s highly flammable and intoxicating when inhaled and can cause explosions because of its high reactivity to air and light.
Answer:
Natural gas, emitting fewer harmful chemicals into the atmosphere than other fossil fuels, can help to mitigate some of these environmental issues. These issues include: Greenhouse Gas Emissions. Smog, Air Quality and Acid Rain
Explanation:
Answer:
[O2(g)][SO2(g)]^2/[SO3(g)]^2
Answer:
<h2>0.059 moles</h2>
Explanation:
To find the number of moles in a substance given it's number of entities we use the formula

where n is the number of moles
N is the number of entities
L is the Avogadro's constant which is
6.02 × 10²³ entities
From the question we have

We have the final answer as
<h3>0.059 moles</h3>
Hope this helps you