Answer:
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Explanation:
Ionic compounds are compound formed from the transfer of electron(s). One atom of the element loses electron(s) while the other atom gains electron(s).
The compound Magnesium chloride is an ionic compound . The bond between an atom of magnesium and 2 atoms of chlorine is an ionic bonding.
The valency electron of magnesium is 2 electron , for the atom of magnesium to attain octet rule, it will easily lose it 2 electrons to the chlorine atoms.
The chlorine atom on the other hand has 7 valency electrons, to attain octet configuration it will most likely gain 1 electron to become stable.
The magnesium atom loses 2 electron to the 2 atoms of chlorine. The 7 valency electrons of each chlorine atom will now be 8 to attain stable configuration. The final compound is written as MgCl2.
Answer:
Explanation:
An electron in 4s is farther away from nucleus and it has higher energy when compared to electron from 1s.
Answer: A. uranium salt
Becquerel made a conclusion that it was the uranium that causes the images found in the photographic plates. Though his theory was disproved during the first time,he continued to develop it. Then, it is through this experiment that Becquerel discovered radioactivity.
Answer:
T₂ = 506.6 K
Explanation:
Given data:
Initial pressure of gas = 25°C (25+273 =298 K)
Initial temperature = 0.500 atm
Final pressure = 0.850 atm
Final temperature = ?
Solution:
According to Gay-Lussac Law,
The pressure of given amount of a gas is directly proportional to its temperature at constant volume and number of moles.
Mathematical relationship:
P₁/T₁ = P₂/T₂
Now we will put the values in formula:
0.500 atm / 298 K = 0.850 atm /T₂
T₂ = 0.850 atm × 298 K / 0.500 atm
T₂ = 253.3 atm. K / 0.500 atm
T₂ = 506.6 K