Answer:
BaO
Explanation:
The barium oxide chemical formula is BaO. The molar mass is 153.33 g/mol. The molecule is formed by one barium cation Ba2+ and one oxide anion O2-. Both ions are bound by one ionic bond.
Answer:
Explanation:
<u>1) First law of thermodynamic (energy balance)</u>
- Heat released by the the hot water (345K ) = Heat absorbedby the cold water (298 K) + Heat absorbed by the calorimeter
<u>2) Energy change of each substance:</u>
Heat released or absorbed = mass × Specific heat × change in temperature
- density of water: you may take 0.997 g/ ml as an average density for the water.
- mass of water: mass = density × volume = 50.0 ml × 0.997 g/ml = 49.9 g
- Specif heat of water: 1 cal / g°C
- Heat released by the hot water:
Heat₁ = 49.9 g × 1 cal / g°C × (345 K - 317 K) = 49.9 g × 1 cal / g°C × (28K)
- Heat absorbed by the cold water:
Heat₂ = 49.9 g × 1 cal / g°C × (317 K - 298 K) = 49.9 g × 1 cal / g°C × (19K)
- Heat absorbed by the calorimeter
Heat₃ = Ccal × (317 K - 298 K) = Ccal × (19K)
<u>4) Balance</u>
49.9 g × 1 cal / g°C × (28 K) = 49.9 g × 1 cal / g°C × (19 K) + Ccal × (19 K)
Ccal = [49.9 g × 1 cal / g°C × (28 K) - 49.9 g × 1 cal / g°C × (19 K) ] / 19K
Ccal = 23.6 cal/ K
- Convert to cal / K to Joule / K
23.6 cal / K × 4.18 J / cal = 98.6 J/K
Which rounded to 2 signficant figures leads to 99 J/k, which is the first choice.