Answer:
The reasons why the seemingly floating bubbles disappear was that they tend to loss their latent heat to the water molecules at the surface water.
Explanation:
Heat energy has a considerable effect on the velocity of molecules including water. The water molecules below the container will receive much more heat energy than those above it. This heat energy in the form of specific heat capacity and latent heat that result in the increase in the speed of individual molecules of water and finally to the escape of the molecules to a colder region of the container, in this case the upper region. At the collision of the bottom water to the surface water, they tend to exchange their heat content, the hotter molecules will lose their heat to the cold ones. When the formerly hot molecules encounter this, it will result in lowering the temperature and consequentially to the reduction of their movement, once in the form of bubble, now become ordinary water. This convectional transfer of heat energy will continue until the whole system has a uniform temperature depending on the consistency of the heat source.
Answer:
Explanation:
A solar collector is a device that absords Sun's heat energy to heat air or water. It is majorly used for heating purpose, and do not generate electricity directly.
The flow tubes and collector plate are black in color so as to increase the intensity of heat generated by the collector. A black body is a good absorber of heat, it absorbs most heat directed to the collector. Also, a black body is a good radiator of heat, the heat absorbed is rediated to the appropriate channels for the heating of water or air molecules. The black color increases the efficeincy and percentage of solar energy absorbed by the collector.
If a reflective color is used (e.g white), major percentage of the incident heat would be reflected. This would decrease the efficiency of the solar collector.
<span>The student should
follow following steps to make 1 L of </span>2.0 M CaCl₂.<span>
<span>
1. First he should
calculate the number of moles of 2.0 M CaCl</span></span>₂ in 1 L solution.<span>
</span>Molarity of the solution = 2.0 M<span>
Volume of solution which should be prepared = 1 L
Molarity =
number of moles / volume of the solution
Hence, number of moles in 1 L = 2 mol
2. Find
out the mass of dry CaCl</span>₂ in 2 moles.<span>
moles =
mass / molar mass
Moles of CaCl₂ =
2 mol</span><span>
Molar mass of CaCl₂ = </span><span>110.98 g/mol
Hence, mass of CaCl</span>₂ = 2 mol x <span>110.98 g/mol
= 221.96
g
3. Weigh the mass
accurately
4. Then take a cleaned and dry1 L volumetric flask and place a funnel top of it. Then carefully add the salt into the volumetric flask and
finally wash the funnel and watch glass
with de-ionized water. That water also should be added into the volumetric
flask.
5. Then add some
de-ionized water into
the volumetric flask and swirl well until all salt are
dissolved.
<span>6. Then top up to
mark of the volumetric flask carefully.
</span></span>
7. As the final step prepared solution should be labelled.
When we increase the surface area of an object, more atoms are exposed. Since more atoms are exposed, the atoms can react faster, and this is why the rate of a reaction increases when the surface area increases.
For example, lets say we want to heat a potato. If we just put the whole potato in the microwave, it will take a long time for the potato to get thoroughly heated. However, if we chop the potato into smaller pieces, we will observe that it gets heated much faster. This is because we increased the surface area of the potato, which resulted in more potato atoms to be exposed to the heat, and caused the reaction to be faster.