Answer:
Emechanical=mgh+
mν²
Explanation:
The equation for the total mechanical energy is:
Emechanical=Epotential+Ekinetic
In which,
Epotential=mgh; m: mass of the body, g: gravity; h: height
Ekinetic=
mν²; m: mass of the body, ν: velocity of the body
So,
Emechanical=mgh+
mν²
Answer: The drag force goes up by a factor of 4
Explanation:
The <u>Drag Force</u> equation is:
(1)
Where:
is the Drag Force
is the Drag coefficient, which depends on the material
is the density of the fluid where the bicycle is moving (<u>air in this case)
</u>
is the transversal area of the body or object
the bicycle's velocity
Now, if we assume
,
and
do not change, we can rewrite (1) as:
(2)
Where
groups all these coefficients.
So, if we have a new velocity
, which is the double of the former velocity:
(3)
Equation (2) is written as:
(4)
Comparing (2) and (4) we can conclude<u> the Drag force is four times greater when the speed is doubled.</u>
Modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
<h3>What is modeling?</h3>
A model is a representation of reality. We know that a model could help us to recreate reality in a manner that we could be able to relate fully with it. A model could be used also a means of explanation.
The atomic models that we have usually help us to understand more abut the atom. Therefore, modelling the structure of the atom is important because modeling replaces the real system with something similar but easier to examine. Option B
Learn more about modelling the atom:brainly.com/question/1596638
#SPJ1
Answer:
John Dalton
Explanation:
Dalton's atomic theory was the foundation for a new understanding of chemical structures. He proposed that matter was constituted by indivisible and indestructible particles "atoms." He theorized that all atoms of a particular substance were equal, and the atoms of different substances had atoms of different sizes and masses.
He also proposed that all compounds of elements were combinations of elements but in a very precise ratio.