We are asked to solve for the frequency heard when a car is coming towards the observer. The car is moving at 16 m/s and the velocity of the sound is 343 m/s where the car horns at 583 Hz. We will use Doppler's Effect formula in calculating the unknown frequency such that the solution is shown below:
Fl = (V + Vl) * Fs / (V - Vs)
FL = (343 + 0)*583 / (343 - 16)
FL = 611. 53 Hertz
The answer for the frequency of the observer is 611.53 hertz.
To find the impulse you multiply the mass by the change in velocity (impulse=mass×Δvelocity). So in this case, 3 kg × 12 m/s ("12" because the object went from zero m/s to 12 m/s).
The answer is 36 kg m/s
19.8 N force is tending to lift Rover vertically off the ground.
<h3>What is horizontal and vertical component?</h3>
The horizontal velocity component (
) describes the influence of the velocity in displacing the projectile horizontally. The vertical velocity component (
) describes the influence of the velocity in displacing the projectile vertically.
According to the question,
The women pulls the dog with a force of 30 N at an angle of 29° from the horizontal.
Horizontal component= 30cos(29°) = 22.2 N
Vertical component = 30sin(29°) = 19.8 N
Therefore,
The horizontal component would tend to make the dog move forward and the vertical component would tend lift it off the ground.
Hence,
19.8 N force is tending to lift Rover vertically off the ground.
Learn more about horizontal and vertical component here:
brainly.com/question/11776718
#SPJ1
Answer:
Technician A
Explanation:
An oxygen sensor is being tested with a digital multimeter using the MIN/MAX function. The readings are: minimum = 78 mV; maximum = 932 mV; average = 442 mV. Technician A says that the engine is operating normally. Technician B says that the oxygen sensor is skewed too rich. Which technician is correct?
an oxygen sensor detects te amount of oyen in an engine at the exhaust pipe.
if the oxygen sensor detects oxygen at the above boundary condition, ten the engine is in good working condition
Answer:
Salty Water
Explanation:
Swimming in Salty water gives us more buoyancy when freshwater does not.