By using third law of equation of motion, the final velocity V of the rubber puck is 8.5 m/s
Given that a hockey player hits a rubber puck from one side of the rink to the other. The parameters given are:
mass m = 0.170 kg
initial speed u = 6 m/s.
Distance covered s = 61 m
To calculate how fast the puck is moving when it hits the far wall means we are to calculate final speed V
To do this, let us first calculate the kinetic energy at which the ball move.
K.E = 1/2m
K.E = 1/2 x 0.17 x 
K.E = 3.06 J
The work done on the ball is equal to the kinetic energy. That is,
W = K.E
But work done = Force x distance
F x S = K.E
F x 61 = 3.06
F = 3.06/61
F = 0.05 N
From here, we can calculate the acceleration of the ball from Newton second law
F = ma
0.05 = 0.17a
a = 0.05/0.17
a = 0.3 m/
To calculate the final velocity, let us use third equation of motion.
=
+ 2as
=
+ 2 x 0.3 x 61
= 36 + 36
= 72
V = 
V = 8.485 m/s
Therefore, the puck is moving at the rate of 8.5 m/s (approximately) when it hits the far wall.
Learn more about dynamics here: brainly.com/question/402617
Answer:
Increases
Explanation:
The kinetic energy _____ (Increses)
as the roller coaster goes downhill
A billiard ball collides with a stationary identical billiard ball to make it move. If the collision is perfectly elastic, the first ball comes to rest after collision.
<h3>Why does the first ball comes to rest after collision ?</h3>
Let m be the mass of the two identical balls.
u1 = velocity before the collision of ball 1
u2 = 0 = velocity of second ball that is at rest
v1 and v2 are the velocities of the balls after the collision.
From the conservation of momentum,
∴ mu1 + mu2 = mv1 + mv2
∴ mu1 = mv1 + mv2
∴ u1 = v1 + v2
In an elastic collision, the kinetic energy of the system before and after collision remains same.

∴ 
∴ 
∴
₁
₂ = 0
- It is impossible for the mass to be zero.
- Because the second ball moves, velocity v2 cannot be zero.
- As a result, the velocity of the first ball, v1, is zero, indicating that it comes to rest after collision.
<h3>What is collision ?</h3>
An elastic collision is a collision between two bodies in which the total kinetic energy of the two bodies remains constant. There is no net transfer of kinetic energy into other forms such as heat, noise, or potential energy in an ideal, fully elastic collision.
Can learn more about elastic collision from brainly.com/question/12644900
#SPJ4
Answer:
Tangential acceleration is in the direction of velocity - along the circumference of a circle if the object is undergoing circular motion
a = (V2 - V1) / T
Radial acceleration is perpendicular to the direction of motion if the object is not moving in a straight line (perhaps along the circumference of a circle)
a = m V^2 / R = m ω^2 R where R is the radius vector of the velocity - note that the Radius vector is directed from the center of motion to the object and for circular motion would be constant in magnitude but not in direction
Because you see yourself the opposite way in a mirror. So yes your “seeing” yourself but not how everyone else sees you.