In order to compute the torque required, we may apply Newton's second law for circular motion:
Torque = moment of inertia * angular acceleration
For this, we require the angular acceleration, α. We may calculate this using:
α = Δω/Δt
The time taken to achieve rotational speed may be calculated using:
time = 1 revolution * 2π radians per revolution / 3.5 radians per second
time = 1.80 seconds
α = (3.5 - 0) / 1.8
α = 1.94 rad/s²
The moment of inertia of a thin disc is given by:
I = MR²/2
I = (0.21*0.1525²)/2
I = 0.002
τ = 1.94 * 0.002
τ = 0.004
The torque is 0.004
Answer:
minimum length of a surface crack is 18.3 mm
Explanation:
Given data
plane strain fracture toughness K = 82.4 MPa m1/2
stress σ = 345 MPa
Y = 1
to find out
the minimum length of a surface crack
solution
we will calculate length by this formula
length = 1/π ( K / σ Y)²
put all value
length = 1/π ( K / σ Y)²
length = 1/π ( 82.4
/ 345× 1)²
length = 18.3 mm
minimum length of a surface crack is 18.3 mm
Answer:
4.5g/cm^3
Explanation:
Here, Mass(m)=67.5g
Volume(v)=15cm^3
Now, According to formula,
Density(p)=m/v
=67.5/15
=4.5g/cm^3
Answer:
is the time taken by the car to accelerate the desired range of the speed from zero at full power.
Explanation:
Given:
Range of speed during which constant power is supplied to the wheels by the car is
.
- Initial velocity of the car,

- final velocity of the car during the test,

- Time taken to accelerate form zero to 32 mph at full power,

- initial velocity of the car,

- final desired velocity of the car,

Now the acceleration of the car:



Now using the equation of motion:


is the time taken by the car to accelerate the desired range of the speed from zero at full power.
Answer:
35, I got you bro, i got you