1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
gulaghasi [49]
3 years ago
15

Qual a capacidade térmica de um objeto que, ao receber 10000 cal de energia, tem sua temperatura elevada de 25°C para 75°C?

Physics
1 answer:
Stolb23 [73]3 years ago
6 0

Answer:

200 cal/^{\circ}C

Explanation:

When heat energy is supplied to an object, the temperature of the object increases according to the equation:

Q=C\Delta T

where

Q is the heat supplied

C is the heat capacity of the object

\Delta T is the change in temperature

In this problem we have:

Q=10,000 cal is the energy supplied

\Delta T=75C-25C=50C is the change in temperature of the object

Therefore, the heat capacity of the object is:

C=\frac{Q}{\Delta T}=\frac{10,000}{50}=200 cal/^{\circ}C

You might be interested in
Two 0.20-kg balls, moving at 4 m/s east, strike a wall. Ball A bounces backwards at the same speed. Ball B stops. Which statemen
muminat

Answer:

Option A

Explanation:

From the question we are told that:

Mass m=0.20kg

Velocity v=4m/s

Generally the equation for momentum for Ball A is mathematically given by

Initial Momentum

 M_{a1}=mV

 M_{a1}=0.2*4

 M_{a1}=0.8

Final Momentum

 M_{a2}=-0.8kgm/s

Therefore

 \triangle M_a=-1.6kgm/s

Generally the equation for momentum for Ball B is mathematically given by

Initial Momentum

 M_{b1}=mV

 M_{b1}=0.2*4

 M_{b1}=0.8

Final Momentum

 M_{b2}=-0 kgm/s

Therefore

 |\triangle M_a|>|\triangle Mb|

Option A

4 0
3 years ago
What is the difference between kinetic and gravitacional energy?
kondaur [170]

Answer:

In physics, the kinetic energy (KE) of an object is the energy that it possesses due to its motion

In classical mechanics, the gravitational potential at a location is equal to the work (energy transferred) per unit mass that would be needed to move an object to that location from a fixed reference location. It is analogous to the electric potential with mass playing the role of charge. The reference location, where the potential is zero, is by convention infinitely far away from any mass, resulting in a negative potential at any finite distance.

In mathematics, the gravitational potential is also known as the Newtonian potential and is fundamental in the study of potential theory. It may also be used for solving the electrostatic and magnetostatic fields generated by uniformly charged or polarized ellipsoidal bodies

8 0
3 years ago
A block has a volume of 0.09 m3 and a density of 4,000 kg/m3. What's the force of gravity acting on the block in water?
12345 [234]

                                       Density = (mass) / (volume)

                                4,000 kg/m³ = (mass) / (0.09 m³)

Multiply each side
by  0.09 m³ :           (4,000 kg/m³) x (0.09 m³) = mass

                                 mass = 360 kg .

Force of gravity = (mass) x (acceleration of gravity)

                           = (360 kg) x (9.8 m/s²)

                           = (360 x 9.8)  kg-m/s²

                           =   3,528 newtons . 

That's the force of gravity on this block, and it doesn't matter
what else is around it.  It could be in a box on the shelf or at
the bottom of a swimming pool . . . it's weight is 3,528 newtons
(about 793.7 pounds).

Now, it won't seem that heavy when it's in the water, because
there's another force acting on it in the upward direction, against
gravity.  That's the buoyant force due to the displaced water.

The block is displacing 0.09 m³ of water.  Water has 1,000 kg of
mass in a m³, so the block displaces 90 kg of water.  The weight
of that water is  (90) x (9.8) = 882 newtons (about 198.4 pounds),
and that force tries to hold the block up, against gravity.

So while it's in the water, the block seems to weigh

       (3,528  -  882) = 2,646 newtons  (about 595.2 pounds) .

But again ... it's not correct to call that the "force of gravity acting
on the block in water".  The force of gravity doesn't change, but
there's another force, working against gravity, in the water.
5 0
3 years ago
Read 2 more answers
The diagram shows the scales used for recording
padilas [110]

Answer: 212

Explanation:

3 0
3 years ago
What happens to the density of ocean water when salinity increases? A. It increases. B. It decreases. C. It becomes variable. D.
omeli [17]
A. It increases... but slightly. Good luck!
3 0
3 years ago
Other questions:
  • At what other angle will a thrown ball go the same distance as one thrown at an angle of 75 degrees?
    12·1 answer
  • In what ways does energy transform or convert from one form to another?
    12·1 answer
  • The movement of thermal energy from a warmer object to a cooler object is called
    12·2 answers
  • Please helppp nowwwwww
    12·1 answer
  • ALWAYS use significant figure rules. Remember that these rules apply to all numbers that are measurements.
    6·2 answers
  • The weight of an astronout is 60kg on earth, find the wight of the same object on the planet where the gravitational attraction
    6·1 answer
  • When is something weightless
    15·1 answer
  • How and why dose air pressure change with altitude in the atmosphere
    14·1 answer
  • 1 gram of radium is reduced by 3.1 mg in 5 years by alpha decay.
    7·1 answer
  • What is the difference between potential and kinetic energy? *
    7·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!