The surface is frictionless, so there is no frictional force acting on the ball. There are no other forces acting on the ball in the horizontal direction, so it's a uniform motion with constant speed. Therefore, the velocity of the ball will remain the same for the entire duration of the motion, and so after 5 seconds the velocity is still 15 m/s.
Answer:
50 m
Explanation:
Acceleration= force/mass
3000/3000=1m/s^-2
Applying equation of motion:
V^2=U^2+2as; V is final velocity, u is initial velocity, a is acceleration and s is the distance covered.
0=10^2 -2*1s;
Solve for s
The answer that is being described above is the ASTEROIDS. The one that we see floating between Mars and Jupiter is what we call the Asteroid Belt. The asteroid belt comprises of different rocky bodies and they also orbit within the solar system. Hope this helps.
Initial volume of mercury is
V = 0.1 cm³
The temperature rise is 35 - 5 = 30 ⁰C = 30 ⁰K.
Because the coefficient of volume expansion is 1.8x10⁻⁴ 1/K, the change in volume of the mercury is
ΔV = (1.8x10⁻⁴ 1/K)*(30 ⁰K)(0.1 cm³) = 5.4x10⁻⁴ cm³
The cross sectional area of the tube is
A = 0.012 mm² = (0.012x10⁻² cm²).
Therefore the rise of mercury in the tube is
h = ΔV/A
= (5.4x10⁻⁴ cm³)/(0.012x10⁻² cm²)
= 4.5 cm
Answer: 4.5 cm
Answer:
A 2.0 kg ball, A, is moving with a velocity of 5.00 m/s due west. It collides with a stationary ball, B, also with a mass of 2.0 kg. After the collision
Explanation: