Answer:
Here is the complete question:
https://www.chegg.com/homework-help/questions-and-answers/magnetic-field-372-t-achieved-mit-francis-bitter-national-magnetic-laboratory-find-current-q900632
a) Current for long straight wire 
b) Current at the center of the circular coil 
c) Current near the center of a solenoid 
Explanation:
⇒ Magnetic Field due to long straight wire is given by (B),where

Plugging the values,
Conversion
,and 

⇒Magnetic Field at the center due to circular coil (at center) is given by,
So 
⇒Magnetic field due to the long solenoid,
Then
So the value of current are
,
and
respectively.
Answer:
True
Explanation:
The Sun rotates in the counterclockwise (CCW) direction when seen from its north pole. Since, the planets revolve around the Sun because of its gravity, the revolution of all the planets and their moons as seen from the north of the Sun is in CCW direction.
In fact most of the solar system bodies rotate in the same direction that is CCW. Some major exceptions to this are Venus and Uranus.
Almost all the planets and moons were made from the planetary disk around the Sun. Thus, they lie nearly in the same plane.
Answer:
The time where the avergae speed equals the instaneous speed is T/2
Explanation:
The velocity of the car is:
v(t) = v0 + at
Where v0 is the initial speed and a is the constant acceleration.
Let's find the average speed. This is given integrating the velocity from 0 to T and dividing by T:

v_ave = v0+a(T/2)
We can esaily note that when <u><em>t=T/2</em></u><u><em> </em></u>
v(T/2)=v_ave
Now we want to know where the car should be, the osition of the car is:

Where x_A is the position of point A. Therefore, the car will be at:
<u><em>x(T/2) = x_A + v_0 (T/2) + (1/8)aT^2</em></u>
Explanation :
The forces acting on hot- air balloon are:
Weight, (W)
Force due to air resistance, (F)
Upthrust force, (U)
Its weight W is acting in downward direction. The upthrust force U acts in upward direction. When the balloon is moving upward, the air resistance is in downward and vice versa.
In this case, the hot-air balloon descends vertically at constant speed.
so, 
and 
so,
....................(1)
when it is ascending let the weight that it is releasing is R, so
..........(2)
solving equation (1) and (2)

2F is the weight of material that must be released from the balloon so that it ascends vertically at the same constant speed.