1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Nonamiya [84]
3 years ago
14

A block of mass 2.00 kg is initially at rest at x=0 on a slippery horizontal surface for which there is no friction. Starting at

time t=0, a horizontal force Fx(t)=β−αt is applied to the block, where α = 6.00 N/s and β = 4.00 N.
What is the largest positive value of x reached by the block?
How long does it take the block to reach this point, starting from t = 0?
What is the magnitude of the force when the block is at this value of x?
Physics
1 answer:
Allisa [31]3 years ago
8 0

Answer:

   x = 1,185 m ,     t = 4/3 s ,  F = - 4 N

Explanation:

For this exercise we use Newton's second law

         F = m a = m dv /dt

        β - α t = m dv / dt

        dv = (β – α t) dt

     

We integrate

        v = β t - ½ α t²

We evaluate between the lower limits v = v₀ for t = 0 and the upper limit v = v for t = t

       v-v₀ = β t - ½ α t²

the farthest point of the body is when v = v₀ = 0

  0 = β t - ½ α t²

  t = 2 β / α

  t = 2 4/6

  t = 4/3 s

Let's find the distance at this time

   v = dx / dt

   dx / dt = v₀ + β t - ½ α t2

   dx = (v₀ + β t - ½ α t2) dt

We integrate

   x = v₀ t + ½ β t - ½ 1/3 α t³

   x = v₀ 4/3 + ½ 4 (4/3)² - 1/6 6 (4/3)³

The body comes out of rest

    x = 3.5556 - 2.37

    x = 1,185 m

The value of force is

    F = β - α t

    F = 4 - 6 4/3

   F = - 4 N

You might be interested in
A particle travels 15 times around a 10-cm radius circle in 42 seconds. what is the average speed (in m/s) of the particle?
nikklg [1K]
<span>Circumference = 2 * pi * r 62.8318 = 2 * 3.14159 * 10 cm 62.8318 * 15 rotations / 42 seconds = 22.44 cm / second 22.44 cm / 100 cm per meter = .2244 m / s</span>
7 0
3 years ago
Jane has a mass of 55 kg and his body covers 700 nails with a surface area of 1.00 mm,
Oksana_A [137]

We have,

  • Jane mass is 55 kg
  • His body covered with 700 nails all of them having a surface area of 1.00 mm² each = 700 × 1 = 700 mm² = 700/1000000 = 7/10000

We know that,

  • Pressure = Force/Area

Let's calculate force as we already have area;

  • F = ma
  • F = 55 × 9.8 { Acceleration due to gravity }
  • F = 539 N

Now, if should she would be on 700 nails then pressure will be;

  • P = F/A
  • P = 539/7 × 10000
  • P = 5390000/7
  • P = 770,000 Pascal

And if should would be on a 1 nail only,

  • P = F/A
  • P = 539/1 × 1000000
  • P = 539000000 Pascal

<u>A</u><u>s</u><u>,</u><u> </u><u>y</u><u>o</u><u>u</u><u> </u><u>c</u><u>a</u><u>n</u><u> </u><u>n</u><u>o</u><u>t</u><u>i</u><u>c</u><u>e</u><u> </u><u>y</u><u>o</u><u>u</u><u>r</u><u>s</u><u>e</u><u>l</u><u>f</u><u> </u><u>t</u><u>h</u><u>a</u><u>t</u><u> </u><u>t</u><u>h</u><u>e</u><u> </u><u>p</u><u>r</u><u>e</u><u>s</u><u>s</u><u>u</u><u>r</u><u>e</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>b</u><u>e</u><u> </u><u>s</u><u>o</u><u> </u><u>h</u><u>i</u><u>g</u><u>h</u><u> </u><u>w</u><u>i</u><u>t</u><u>h</u><u> </u><u>o</u><u>n</u><u>l</u><u>y</u><u> </u><u>1</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>a</u><u>n</u><u>d</u><u> </u><u>b</u><u>e</u><u>c</u><u>a</u><u>u</u><u>s</u><u>e</u><u> </u><u>o</u><u>f</u><u> </u><u>t</u><u>h</u><u>i</u><u>s</u><u>,</u><u> </u><u>n</u><u>a</u><u>i</u><u>l</u><u> </u><u>w</u><u>i</u><u>l</u><u>l</u><u> </u><u>p</u><u>a</u><u>s</u><u>s</u><u> </u><u>through</u><u> </u><u>j</u><u>a</u><u>n</u><u>e</u><u>'</u><u>s</u><u> </u><u>b</u><u>o</u><u>d</u><u>y</u><u>.</u>

6 0
2 years ago
A 6.0 kg metal ball moving at 4.0 m/s hits a 6.0 kg ball of putty at rest and sticks to it. The two go on at 2.0 m/s.
lutik1710 [3]

The metal ball lost energy while the putty ball gained energy.

<h3>What is momentum?</h3>

Momentum is the product of mass and velocity of the body. We must note that momentum before collision is equal to momentum after collision.

1) Kinetic energy before collision = 1/2mv^2 = 0.5 * 6 * 4 = 12 J

2) kinetic energy after collision = 0.5 * 6 *  2= 6 J

3) Kinetic energy of putty ball = 0.5 * 6 *  2= 6 J

4) Energy lost by the metal ball = 12 J -  6 J = 6 J

5) Energy gained by the putty ball = 6 J - 0J = 6 J

6) The rest of the energy was converted to heat after the collision.

Learn more about kinetic energy: brainly.com/question/999862

3 0
2 years ago
For Valentine’s Day, Sally received a helium-filled balloon at a party. On returning home she accidentally left the balloon in t
Softa [21]

Answer:

If the temperature of the air in the balloon is less than the temperature of the air surrounding the balloon then the balloon will appear slightly deflated because of the difference in temperature.

As the temperature of the air in the balloon reaches the surrounding air temperature, then the balloon will appear to be fully inflated because the temperature of the air in the balloon is the same as the surrounding air temperature.

8 0
3 years ago
A 125-kg astronaut (including space suit) acquires a speed of 2.50 m/s by pushing off with her legs from a 1900-kg space capsule
ryzh [129]

(a) 0.165 m/s

The total initial momentum of the astronaut+capsule system is zero (assuming they are both at rest, if we use the reference frame of the capsule):

p_i = 0

The final total momentum is instead:

p_f = m_a v_a + m_c v_c

where

m_a = 125 kg is the mass of the astronaut

v_a = 2.50 m/s is the velocity of the astronaut

m_c = 1900 kg is the mass of the capsule

v_c is the velocity of the capsule

Since the total momentum must be conserved, we have

p_i = p_f = 0

so

m_a v_a + m_c v_c=0

Solving the equation for v_c, we find

v_c = - \frac{m_a v_a}{m_c}=-\frac{(125 kg)(2.50 m/s)}{1900 kg}=-0.165 m/s

(negative direction means opposite to the astronaut)

So, the change in speed of the capsule is 0.165 m/s.

(b) 520.8 N

We can calculate the average force exerted by the capsule on the man by using the impulse theorem, which states that the product between the average force and the time of the collision is equal to the change in momentum of the astronaut:

F \Delta t = \Delta p

The change in momentum of the astronaut is

\Delta p= m\Delta v = (125 kg)(2.50 m/s)=312.5 kg m/s

And the duration of the push is

\Delta t = 0.600 s

So re-arranging the equation we find the average force exerted by the capsule on the astronaut:

F=\frac{\Delta p}{\Delta t}=\frac{312.5 kg m/s}{0.600 s}=520.8 N

And according to Newton's third law, the astronaut exerts an equal and opposite force on the capsule.

(c) 25.9 J, 390.6 J

The kinetic energy of an object is given by:

K=\frac{1}{2}mv^2

where

m is the mass

v is the speed

For the astronaut, m = 125 kg and v = 2.50 m/s, so its kinetic energy is

K=\frac{1}{2}(125 kg)(2.50 m/s)^2=390.6 J

For the capsule, m = 1900 kg and v = 0.165 m/s, so its kinetic energy is

K=\frac{1}{2}(1900 kg)(0.165 m/s)^2=25.9 J

3 0
3 years ago
Other questions:
  • There is a go cart being driven with a momentum of 4500 kgm/s. If the cart's
    12·2 answers
  • A 12.0 V car battery is being used to power the headlights of a car. Each of the two headlights has a power rating of 41.8 Watts
    12·1 answer
  • A 6.00 μF capacitor that is initially uncharged is connected in series with a 4.00 Ω resistor and an emf source with EMF = 60.0
    14·1 answer
  • Velocity which stone gains when falling from height of 80 m is approximately equal to *
    11·1 answer
  • Why is it hard to make a connection between extreme weather events and climate change?
    15·1 answer
  • The fall of a body on the earth's surface cannot be a complete free fall why ?​
    15·1 answer
  • The amount of force applied to an object multiplied by time is
    10·1 answer
  • A rollercoaster loop has a radius of 22.7 m. what is the minimum speed the coaster must have at the top of the loop to not fall
    15·1 answer
  • James has a mass of 98 kg and Basma has a mass of 59 kg. James is running at 3.0 m/s, while Basma is running at 4.0 m/s.
    15·1 answer
  • If for a given pair of media CR
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!