1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
babymother [125]
3 years ago
7

Given that the internal energy of water at 28 bar pressure is 988 kJ kg–1 and that the specific volume of water at this pressure

is 0.121 × 10–2 m3 kg–1, calculate the specific enthalpy of water at 55 bar pressure.
Physics
1 answer:
klasskru [66]3 years ago
5 0

Answer:

1184 kJ/kg

Explanation:

Given:

water pressure P= 28 bar

internal energy U= 988 kJ/kg

specific volume of water v= 0.121×10^-2 m^3/kg

Now from steam table at 28 bar pressure we can write

U= U_{f}= 987.6 kJ/Kg

v_{f}=v=1.210\times 10^{-3}m^{^{3}}/kg

therefore at saturated liquid we have specific enthalpy at 55 bar pressure.

that the specific enthalpy h =  h at 50 bar +(55-50)/(60-50)*( h at 50 bar - h at 60 bar)

h= 1154.5 + \frac{5}{10}\times(1213-1154)

h= 1184 kJ/kg

You might be interested in
the 200 g baseball has a horizontal velocity of 30 m/s when it is struck by the bat, B, weighing 900 g, moving at 47 m/s. during
Ivanshal [37]

Solution :

Given :

Mass of the baseball, m = 200 g

Velocity of the baseball, u = -30 m/s

Mass of the baseball after struck by the bat, M = 900 g

Velocity of the baseball after struck by the bat, v = 47 m/s

According to the conservation of momentum,

Mv+mu=Mv_1+mv_2

(900 x 47) + (200 x -30)  = (900 x v_1) + (200 x v_2)

36300 =  (900 x v_1) + (200 x v_2)

9v_1 + 2v_2 = 363 ..............(i)

9v_1 = 363 - 2v_2

v_1=\frac{363 - 2v_2}{9}

The mathematical expression for the conservation of kinetic energy is

\frac{1}{2}Mv^2+\frac{1}{2}mu^2 = \frac{1}{2}Mv_1^2+\frac{1}{2}mv_2^2

\frac{1}{2}(900)(47)^2+\frac{1}{2}(200)(-30)^2 = \frac{1}{2}(900)v_1^2+\frac{1}{2}(200)v_2^2    ................(ii)

$(9)(14)^2+(2)(-30)^2 = (9)v_1^2+2v_2^2$  

21681 = 9v_1^2+2v_2^2

Substituting (i) in (ii)

21681= 9\left( \frac{363-2v_2}{9}\right)^2+2v_2^2

(363-2v_2)^2+18v_2^2=195129

(363)^2+18v_2^2-2(363)(2v_2)+(363)^2-195129=0

22v_2^2-145v_2-63360=0

Solving the equation, we get

v_2=96 \ m/s, -30 \ m/s

The negative velocity is neglected.

Therefore, substituting 96 m/s for v_2 in (i), we get

v_1=\frac{363-(2 \times 96)}{9}

     = 19

Thus, only impulse of importance is used to find final velocity.

8 0
3 years ago
A stoplight with weight 100 N is suspended at the midpoint of a cable strung between two posts 200 m apart. The attach points fo
Tasya [4]

There are 3 forces acting on the stoplight:

• its weight <em>W</em>, with magnitude <em>W</em> = 100 N, pointing directly downward

• two tension forces <em>T</em>₁ and <em>T</em>₂ with equal magnitude <em>T</em>₁ = <em>T</em>₂ = <em>T</em> = 1000 N, both making an angle of <em>θ</em> with the horizontal, but one points left and the other points right

The stoplight is in equilibrium, so by Newton's second law, the net vertical force acting on it is 0, such that

∑ <em>F</em> = <em>T</em>₁ sin(<em>θ</em>) + <em>T</em>₂ sin(180° - <em>θ</em>) - <em>W</em> = 0

We have sin(180° - <em>θ</em>) = sin(<em>θ</em>) for all <em>θ</em>, so the above reduces to

2<em>T</em> sin(<em>θ</em>) = <em>W</em>

2 (1000 N) sin(<em>θ</em>) = 100 N

sin(<em>θ</em>) = 0.05

<em>θ</em> ≈ 2.87°

If <em>y</em> is the vertical distance between the stoplight and the ground, then

tan(<em>θ</em>) = (15 m - <em>y</em>) / (100 m)

Solve for <em>y</em> :

tan(2.87°) = (15 m - <em>y</em>) / (100 m)

<em>y</em> = 15 m - (100 m) tan(2.87°)

<em>y</em> ≈ 9.99 m

3 0
3 years ago
The temperature of the air in a valley begins to increase after the sun comes up and heats the valley floor. What will
tester [92]

Explanation:

I think it will increase a little bit ... just image ... if the temperature is 0, the velocity will be 0 too. because the vibration of atom is so weak and the sound cant progation.

7 0
3 years ago
What is the wavelength of a wave traveling at 300 m/s if the frequency is 10 Hz?
lions [1.4K]

Answer:

30 m

Explanation:

The wavelength of a wave is found by the velocity divided by the frequency. Therefore, the wavelength is (300 m/s)/(10 Hz) = 30 m

I hope this helps! :)

8 0
3 years ago
Carlos conduce su automóvil a 70 Km/h, mientras que Luis maneja una camioneta a la misma velocidad
DIA [1.3K]

Answer:

shsissjsisjuai

Explanation:

abajxyxaiaodkxfk

4 0
3 years ago
Other questions:
  • Is it possible for a nazi style government to exist in the modern world? Explain why or why not.
    9·1 answer
  • What is the wavelength of a proton traveling at a speed of 6.21 km/s? what would be the region of the spectrum for electromagnet
    9·1 answer
  • What's a broad flat volcano created by quiet eruptions
    13·1 answer
  • How does the media restrict what is discussed in the pubic sphere
    14·1 answer
  • R = (2+2+1) i - (t+1)] + t3 k<br> what is the direction of initial velocity
    13·1 answer
  • Which of these pairs of atoms are isotpoes? (Physical Science) Pair A Pair B Pair C # protons 6 8 5 2 12 12 # neutrons 8 8 5 3 1
    15·1 answer
  • A block of wood has a length of 4 cm a width of 5 cm and a height of 10 cm what is the volume of the wood?
    11·1 answer
  • For factors that affect capillarity<br>​
    11·2 answers
  • What direction would the north pole of a bar magnet point if you were to hang the bar magnet from a thin string?.
    9·1 answer
  • The positions of four objects as a function of time are shown
    8·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!